Skip to main content

Fingerprint Synthesis

  • Chapter
  • First Online:
Handbook of Fingerprint Recognition

Abstract

Synthetic fingerprints, when properly generated, represent a reasonable substitute for real fingerprints for the design, training, and benchmarking of fingerprint recognition algorithms. This approach is particularly useful to deal with emerging privacy regulations (e.g., EU-GDPR) limiting the use of personally identifiable information. This chapter introduces fingerprint synthesis and focuses on the two main categories of generation approaches: (i) first generate a master fingerprint and then derive multiple impressions (e.g., SFinGe); (ii) generative models (e.g., GAN) for the direct synthesis of fingerprint images. Validation of synthetic generators through large scale experiments is finally presented.

Invited Chapter by Raffaele Cappelli, University of Bologna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://uidai.gov.in/.

References

  • Araque, J. L., Baena, M., Chalela, B. E., Navarro, D., & Vizcaya, P. R. (2002). Synthesis of fingerprint images. In Proceedings of International Conference on Pattern Recognition (16th) (Vol. 2, pp. 442–445).

    Google Scholar 

  • Attia, M., Attia, M. H., Iskander J., Saleh, K., Nahavandi, D., Abobakr, A., Hossny, M., & Nahavandi, S. (2019). Fingerprint synthesis via latent space representation. In Proceedings of International Conference on Systems, Man and Cybernetics (pp. 1855–1861).

    Google Scholar 

  • Bazin, A. I., & Mansfield, T. (2007). An investigation of minutiae template interoperability. In Proceedings of Workshop on Automatic Identification Advanced Technologies (pp. 13–18).

    Google Scholar 

  • Bicz, W. (2003). The idea of description (Reconstruction) of fingerprints with mathematical algorithms and history of the development of this idea at optel. available at: https://optel.eu/article/polska/idea.html. Retrieved November 27, 2008.

  • Buettner, D. J., & Orlans, N. M. (2005). A taxonomy for physics based synthetic biometric models. In Proceedings of Workshop on Automatic Identification Advanced Technologies (pp. 10–14).

    Google Scholar 

  • Cao, K., & Jain, A. K. (2018). Fingerprint synthesis: Evaluating fingerprint search at scale. In Proceedings of International Conference on Biometrics.

    Google Scholar 

  • Cappelli, R., Maio, D., & Maltoni, D. (2000). Synthetic fingerprint-image generation. In Proceedings of International Conference on Pattern Recognition (Vol. 3, pp. 475–478).

    Google Scholar 

  • Cappelli, R., Maio, D., & Maltoni, D. (2001). Modelling plastic distortion in fingerprint images. In Proceedings of International Conference on Advances in Pattern Recognition (pp. 369–376).

    Google Scholar 

  • Cappelli, R., Maio, D., & Maltoni, D. (2002). Synthetic fingerprint-database generation. In Proceedings of International Conference on Pattern Recognition.

    Google Scholar 

  • Cappelli, R., Maio, D., & Maltoni, D. (2004). An improved noise model for the generation of synthetic fingerprints. In Proceedings of International Conference on Control, Automation, Robotics, and Vision.

    Google Scholar 

  • Cappelli, R., Maio, D., Maltoni, D., Wayman, J. L., & Jain, A. K. (2006). Performance evaluation of fingerprint verification systems. IEEE Transactions on Pattern Analysis Machine Intelligence, 28(1), pp. 3–18.

    Google Scholar 

  • Cappelli, R., Lumini, A., Maio, D., & Maltoni, D. (2007). Fingerprint image reconstruction from standard templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1489–1503.

    Google Scholar 

  • Cappelli, R., & Maltoni, D. (2009). On the spatial distribution of fingerprint singularities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4), 742–448.

    Google Scholar 

  • Cappelli, R., Ferrara, M., & Maltoni, D. (2018). Generating synthetic fingerprints. In M. Drahanský (Ed.), Hand-Based biometrics: Methods and technology. IET.

    Google Scholar 

  • Chen, Y., & Jain, A. K. (2009). Beyond minutiae: A fingerprint individuality model with pattern, ridge and pore features. In Proceedings of International Conference on Biometrics.

    Google Scholar 

  • Cho, U. K., Hong, J. H., & Cho, S. B. (2007). Automatic fingerprints image generation using evolutionary algorithm. In Proceedings of International Conference on Biometrics (pp. 134–143).

    Google Scholar 

  • Cui, Z., Feng, J., & Zhou, J. (2021). Dense registration and mosaicking of fingerprints by training an end-to-end network. IEEE Transactions on Information Forensics and Security, 16, 627–642.

    Google Scholar 

  • Engelsma, J. J., Cao, K., & Jain, A. K. (2021). Learning a fixed-length fingerprint representation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 43(6), 1981–1997.

    Google Scholar 

  • Feng, J., & Jain, A. K. (2011). Fingerprint reconstruction: From minutiae to phase. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 209–223.

    Google Scholar 

  • Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Proceedings of International Conference on Machine Learning (pp. 148–156).

    Google Scholar 

  • Gonzales, R. C., & Woods, R. E. (2007). Digital image processing (3rd ed.) Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160.

  • Gottschlich, C., & Huckemann, S. (2014). Separating the real from the synthetic: Minutiae histograms as fingerprints of fingerprints. IET Biometrics, 3(4), 291–301.

    Google Scholar 

  • Grother, P., McCabe, M., Watson, C., Indovina, M., Salamon, W., Flanagan, P., Tabassi, E., Newton, E., & Wilson, C. (2006). Performance and interoperability of the INCITS 378 fingerprint template. NIST Research Report: NISTIR 7296.

    Google Scholar 

  • Gu, S., Feng, J., Lu, J., & Zhou, J. (2021). Latent fingerprint registration via matching densely sampled points. IEEE Transactions on Information Forensics and Security, 16, 1231–1244.

    Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of Wasserstein GANs. arXiv:1704.00028.

  • Hill, C. J. (2001). Risk of masquerade arising from the storage of biometrics. Bachelor of Science Thesis, The Department of Computer Science Australian National University.

    Google Scholar 

  • ISO/IEC 19794-2 (2005). ISO/IEC, “ISO/IEC 19794-2:2005 – Biometric Data Interchange Formats – Part 2: Finger Minutiae Data”. ISO/IEC Standard.

    Google Scholar 

  • Imdahl, C., Huckemann, S., & Gottschlich, C. (2015). Towards generating realistic synthetic fingerprint images. In Proceedings of International Symposium on Image and Signal Processing and Analysis (pp. 78–82).

    Google Scholar 

  • Johnson, P. A., Hua, F., & Schuckers, S. A. C. (2013). Texture modeling for synthetic fingerprint generation. In Proceedings of CVPR Workshop on Biometrics (pp. 154–159).

    Google Scholar 

  • Jolliffe, I. T. (1986). Principle component analysis. Springer, New York.

    Google Scholar 

  • Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv:1312.6114.

  • Kosz, D. (1999). New numerical methods of fingerprint recognition based on mathematical description of arrangement of dermatoglyphics and creation of minutiae. In D. Mintie (Ed.), Biometrics in Human Service User Group Newsletter.

    Google Scholar 

  • Kücken, M. (2007). Models for fingerprint pattern formation. Forensic Science International, 171(2–3), 85–96.

    Google Scholar 

  • Kücken, M., & Newell, A. C. (2004). A model for fingerprint formation. Europhysics Letters, 68(1), 141.

    Google Scholar 

  • Kücken, M., & Champod, C. (2013). Merkel cells and the individuality of friction ridge skin. Journal of Theoretical Biology, 317, 229–237.

    Google Scholar 

  • Larkin, K. G., & Fletcher, P. A. (2007). A coherent framework for fingerprint analysis: Are fingerprints holograms? Optics Express, 15(14), 8667–8677.

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., & Jain, A. K. (2002a). FVC2000: Fingerprint verification competition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 402–412.

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., & Jain, A. K. (2002b). FVC2002: Second fingerprint verification competition. In Proceedings of International Conference on Pattern Recognition.

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., & Jain, A. K. (2004). FVC2004: Third fingerprint verification competition. In Proceedings of International Conference on Biometric Authentication (pp. 1–7).

    Google Scholar 

  • Mardia, K. V., Li, Q., & Hainsworth, T. J. (1992). On the Penrose hypothesis on fingerprint patterns. IMA Journal of Mathematics Applied in Medicine, 9(4), 289–294.

    Google Scholar 

  • Minaee, S., & Abdolrashidi, A. (2018). Finger-GAN: Generating realistic fingerprint images using connectivity imposed GAN. arXiv:1812.10482.

  • Mistry, V., Engelsma, J. J., & Jain, A. K. (2020). Fingerprint synthesis: Search with 100 million prints. In Proceedings of International Joint Conference on Biometrics (pp. 1–10).

    Google Scholar 

  • Novikov, S. O., & Glushchenko, G. N. (1998). Fingerprint ridges structure generation models. In Proceedings of SPIE (International Workshop on Digital Image Processing and Computer Graphics (6th): Applications in Humanities and Natural Sciences) (Vol. 3346, pp. 270–274).

    Google Scholar 

  • Penrose, L. S. (1965). Dermatoglyphic topology. Nature, 205, 545–546.

    Google Scholar 

  • Perlin, K. (1985). An image synthesizer. Computer Graphics, 19(3), 287–296.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes in C, Cambridge University Press, Cambridge.

    Google Scholar 

  • Qian, P., Li, A., & Liu, M. (2019). Latent fingerprint enhancement based on DenseUNet. In Proceedings of International Conference on Biometrics (pp. 1–6).

    Google Scholar 

  • Rahmes, M., Allen, J. D., Elharti, A., & Tenali, G. B. (2007). Fingerprint reconstruction method using partial differential equation and exemplar-based inpainting methods. In Proceedings of Biometric Symposium.

    Google Scholar 

  • Rodriguez, C. M., de Jongh, A., & Meuwly, D. (2012). Introducing a semi‐automatic method to simulate large numbers of forensic fingermarks for research on fingerprint identification. Journal of Forensic Sciences, 57, 334–342.

    Google Scholar 

  • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.

    Google Scholar 

  • Sherlock, B. G., & Monro, D.M. (1993). A model for interpreting fingerprint topology. Pattern Recognition, 26(7), 1047–1055.

    Google Scholar 

  • Sherstinsky, A., & Picard, R. W. (1994). Restoration and enhancement of fingerprint images using M-Lattice—A novel non-linear dynamical system. In Proceedings of International Conference on Pattern Recognition.

    Google Scholar 

  • Turing, A. (1953). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society, 237, 37–72.

    Google Scholar 

  • Vizcaya, P. R., & Gerhardt, L. A. (1996). A nonlinear orientation model for global description of fingerprints. Pattern Recognition, 29(7), 1221–1231.

    Google Scholar 

  • Wang, Y., & Hu, J. (2011). Global ridge orientation modeling for partial fingerprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), 72–87.

    Google Scholar 

  • Yanushkevich, S. N., Stoica, A., Shmerko, V. P., & Popel, D. V. (2005). Biometric Inverse Problems, Taylor & Francis/CRC Press.

    Google Scholar 

  • Zhao, Q., Jain, A. K., Paulter, N. G., & Taylor, M. (2012). Fingerprint image synthesis based on statistical feature models. In Proceedings of International Conference on Biometrics: Theory, Applications and Systems (pp. 23–30).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maltoni, D., Maio, D., Jain, A.K., Feng, J. (2022). Fingerprint Synthesis. In: Handbook of Fingerprint Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-83624-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83624-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83623-8

  • Online ISBN: 978-3-030-83624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics