Skip to main content

Fingerprint Sensing

  • Chapter
  • First Online:
Handbook of Fingerprint Recognition

Abstract

This chapter surveys available fingerprint acquisition techniques: from the traditional “ink on paper” to live-scan sensing based on optical, capacitive, and ultrasonic technologies. Technological advancements (e.g., the TFT process) that enabled in-display integration of fingerprint sensors in smartphones and emerging technologies such as OCT and touchless sensing are introduced. Examples are provided for multi-finger and single-finger scanners, as well as sensing elements for mobile devices. Factors that determine the quality of the sensing device and the resulting fingerprint image are explained, and the most common Image Quality Specifications (IQS) used for sensor certification are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.nist.gov/itl/iad/image-group/slap-fingerprint-segmentation-evaluation-iii.

  2. 2.

    https://www.nextbiometrics.com/technology/.

  3. 3.

    https://mainguet.org/biometrics/types/fingerprint/fingerprint_sensors_physics_mechan.htm#tactile.

  4. 4.

    https://www.qualcomm.com/products/features/fingerprint-sensors.

  5. 5.

    IAFIS is the acronym used to denote the FBI’s Integrated AFIS.

References

  • Abdelmalek, N., Kasvand, T., Goupil, D., & Otsu, N. (1984). Fingerprint data compression. In Proceedings of International Conference on Pattern Recognition (7th ed., pp. 834–836).

    Google Scholar 

  • Alessandroni, A., Cappelli, R., Ferrara, M., & Maltoni, D. (2008). Definition of fingerprint scanner image quality specifications by operational quality. In Proceedings of European Workshop on Biometrics and Identity Management.

    Google Scholar 

  • Allinson, N. M., Sivarajah, J., Gledhill, I., Carling, M., & Allinson, L. J. (2007). Robust wireless transmission of compressed latent fingerprint images. IEEE Transactions on Information Forensics and Security, 2(3), 331–340.

    Google Scholar 

  • AlShehri, H., Hussain, M., AboAlSamh, H., & AlZuair, M. (2018). A large-scale study of fingerprint matching systems for sensor interoperability problem. Sensors, 18(4), 1008.

    Google Scholar 

  • ANSI/NIST-ITL 1-2011. (2015). NIST, Data format for the interchange of fingerprint, facial & other biometric information, update 2015 of NIST Special Publication 500-290e3.

    Google Scholar 

  • Arora, S. S., Cao, K., Jain, A. K., & Paulter, N. G. (2016). Design and fabrication of 3D fingerprint targets. IEEE Transactions on Information Forensics and Security, 11(10), 2284–2297.

    Google Scholar 

  • Arora, S. S., Jain, A. K., & Paulter, N. G. (2017). Gold fingers: 3D targets for evaluating capacitive readers. IEEE Transactions on Information Forensics and Security, 12(9), 2067–2077.

    Google Scholar 

  • Auksorius, E., & Boccara, A. C. (2015). Fingerprint imaging from the inside of a finger with full-field optical coherence tomography. Biomedical Optics Express, 6(11), 4465–4471.

    Google Scholar 

  • Auksorius, E., & Boccara, A. C. (2017). Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera. Journal of Biomedical Optics, 22(9), 1–8.

    Google Scholar 

  • Auksorius, E., Raja, K. B., Topcu, B., Ramachandra, R., Busch, C., & Boccara, C. A. (2020). Compact and mobile full-field optical coherence tomography sensor for subsurface fingerprint imaging. IEEE Access, 8, 15194–15204.

    Google Scholar 

  • Aum, J., Kim, J., & Jeong, J. (2016). Live acquisition of internal fingerprint with automated detection of subsurface layers using OCT. IEEE Photonics Technology Letters, 28(2), 163–166.

    Google Scholar 

  • Bae, S., Ling, Y., Lin, W., & Zhu, H. (2018). Optical fingerprint sensor based on a-Si:H TFT technology. Proceedings of SID Symposium Digest of Technical Papers, 49(1), 1017–1020.

    Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Google Scholar 

  • Bicz, W., Banasiak, D., Bruciak, P., Gumienny, S., Gumuliński, Z., Kosz, D., Krysiak, A., Kuczyński, W., Pluta, M., & Rabiej, G. (1999). Fingerprint structure imaging based on an ultrasound camera. Instrumentation Science and Technology, 27, 295–303.

    Google Scholar 

  • BioLab. (2007). BioLab—University of Bologna, FVC 2006 web site. Retrieved November 27, 2008, from http://bias.csr.unibo.it/fvc2006.

  • Bontrager, P., Roy, A., Togelius, J., Memon, N., & Ross, A. (2018). DeepMasterPrints: Generating masterprints for dictionary attacks via latent variable evolution. In Procedings of International Conference on Biometrics Theory, Applications and Systems (BTAS), Redondo Beach, CA, USA (pp. 1–9).

    Google Scholar 

  • Borgefors, G. (1988). Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(8), 849–865.

    Google Scholar 

  • Bradley, J. N., Brislawn, C. M., & Hopper, T. (1992). The FBI wavelet/scalar quantization standard for grayscale fingerprint image compression. In Proceedings of SPIE (Visual Info. Proc. II) (pp. 293–304).

    Google Scholar 

  • Brislawn, C. M., Bradley, J. N., Onyshczak, R. J., & Hopper, T. (1996). The FBI compression standard for digitized fingerprint images. In Proceedings of SPIE (Applications of Digital Image Processing XIX) (Vol. 2847).

    Google Scholar 

  • Brown, L. G. (1992). Image registration techniques. ACM Computing Surveys, 24(4), 326–376.

    Google Scholar 

  • Cappelli, R., Ferrara, M., & Maltoni, D. (2008). On the operational quality of fingerprint scanners. IEEE Transactions on Information Forensics and Security, 3(2), 192–202.

    Google Scholar 

  • Cappelli, R., Maio, D., Maltoni, D., Wayman, J. L., & Jain, A. K. (2006). Performance evaluation of fingerprint verification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 3–18.

    Google Scholar 

  • Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2016). Fingerprints and other ridge skin impressions (2nd ed.). CRC Press.

    Google Scholar 

  • Chen, Y., Parziale, G., Diaz-Santana, E., & Jain, A. K. (2006). 3D touchless fingerprints: Compatibility with legacy rolled images. In Proceddings of Biometric Symposium.

    Google Scholar 

  • Choi, H., Choi, K., & Kim, J. (2010). Mosaicing touchless and mirror-reflected fingerprint images. IEEE Transactions on Information Forensics and Security, 5(1), 52–61.

    Google Scholar 

  • Choi, K., Choi, H., Lee, S., & Kim, J. (2007). Fingerprint image mosaicking by recursive ridge mapping. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 37(5), 1191–1203.

    Google Scholar 

  • Chong, M., Gay, R., Tan, H., & Liu, J. (1992). Automatic representation of fingerprints for data compression by B-spline function. Pattern Recognition, 25(10), 1199–1210.

    Google Scholar 

  • Chugh, T., & Jain, A. K. (2019). OCT fingerprints: Resilience to presentation attacks. arXiv:1908.00102.

  • CJIS. FBI—CJIS Division. (2005). Electronic fingerprint transmission specification (EFTS). Int. Report: IAFIS-DOC-01078-7.1 (V7.1).

    Google Scholar 

  • CJIS. FBI—CJIS Division. (2006). Image quality specifications for single finger capture devices. Retrieved July, 2021, from https://fbibiospecs.fbi.gov/file-repository/pivspec.pdf/view.

  • CJIS. FBI—CJIS Division. (2010). WSQ gray-scale fingerprint image compression specification—Version 3.1. Retrieved March, 2022, from https://fbibiospecs.fbi.gov/file-repository/wsq_gray-scale_specification_version_3_1_final.pdf/view.

  • CJIS. FBI—CJIS Division. (2017). Electronic biometric transmission specification (EBTS). Int. Report: NGI-DOC-01862-1.1 (V10.0.8). Retrieved March, 2022, from https://fbibiospecs.fbi.gov/file-repository/master-ebts-v10-0-8-09302017_final.pdf.

  • Clausen, S. (2007). A single-line AC capacitive fingerprint swipe sensor. In N. K. Ratha & V. Govindaraju (Eds.), Advances in biometrics: Sensors, algorithms and systems (pp. 49–62). Springer.

    Google Scholar 

  • Colins, M.W. (1992). Realizing the full value of latent prints. California Identification Digest.

    Google Scholar 

  • Darlow, L. N., & Connan, J. (2015). Efficient internal and surface fingerprint extraction and blending using optical coherence tomography. Applied Optics, 54(31), 9258–9268.

    Google Scholar 

  • Deriche, M., Kasaei, S., & Bouzerdoum, A. (1999). A novel fingerprint image compression technique using the wavelet transform and piecewise uniform pyramid lattice vector quantization. In Proceedings of International Conference on Image Processing.

    Google Scholar 

  • Donida Labati, R., Genovese, A., Piuri, V., & Scotti, F. (2016). Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(2), 202–219.

    Google Scholar 

  • Edwards, D. G. (1984). Fingerprint sensor. US Patent 4429413.

    Google Scholar 

  • Engelsma, J. J., Arora, S. S., Jain, A. K., & Paulter, N. G. (2018). Universal 3D wearable fingerprint targets: Advancing fingerprint reader evaluations. IEEE Transactions on Information Forensics and Security, 13(6), 1564–1578.

    Google Scholar 

  • Engelsma, J. J., Cao, K., & Jain, A. K. (2019). RaspiReader: Open source fingerprint reader. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(10), 2511–2524.

    Google Scholar 

  • Eslami, R., & Radha, H. (2004). Wavelet-based contourlet transform and its application to image coding. In Procedings of International Conference on Image Processing (Vol. 5, pp. 3189–3192).

    Google Scholar 

  • Fatehpuria, A., Lau, D. L., & Hassebrook, L. G. (2006). Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan. In Proceedings of SPIE Conference on Biometric Technology for Human Identification III.

    Google Scholar 

  • FBI. (2021). Retrieved March, 2022, from https://fbibiospecs.fbi.gov/certifications-1/cpl.

  • Fernandez-Saavedra, B., Sanchez-Reillo, R., Ros-Gomez, R., & Liu-Jimenez, J. (2016). Small fingerprint scanners used in mobile devices: The impact on biometric performance. IET Biometrics, 5(1), 28–36.

    Google Scholar 

  • Ferrara, M., Franco, A., & Maltoni, D. (2007). Estimating image focusing in fingerprint scanners. In Proceedings of Workshop on Automatic Identification Advanced Technologies (pp. 30–34).

    Google Scholar 

  • Figueroa-Villanueva, M. A., Ratha, N. K., & Bolle, R. M. (2003). A comparative performance analysis of JPEG 2000 vs. WSQ for fingerprint image compression. In Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (4th ed., pp. 385–392).

    Google Scholar 

  • Fiumara, G., Tabassi, E., Flanagan, P., Grantham, J., Ko, K., Marshall, K., Schwarz, M., Woodgate, B., & Boehnen, C. (2017). Nail to nail fingerprint challenge. NIST-IR 8210. Retrieved July, 2021, from https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8210.pdf.

  • Forkert, R. D., Kearnan, G. T., Nill, N. B., & Topiwala, P. N. (1994). Test procedures for verifying IAFIS scanner image quality requirements. MITRE Technical Report: MP 94B0000039R1.

    Google Scholar 

  • Galbally, J., Bostrom, G., & Beslay, L. (2017). Full 3D touchless fingerprint recognition: Sensor, database and baseline performance. In Proceedings of International Joint Conference on Biometrics (IJCB) (pp. 225–233).

    Google Scholar 

  • Garris, M. D., & McCabe, R. M. (2000). NIST special database 27, fingerprint minutiae from latent and matching tenprint images. U.S. National Institute of Standards and Technology.

    Google Scholar 

  • Gupta, P., & Gupta, P. (2012). Slap fingerprint segmentation. In Proceedings of International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA (pp. 189–194).

    Google Scholar 

  • Gupta, P., & Gupta, P. (2014). An efficient slap fingerprint segmentation and hand classification algorithm. Neurocomputing, 142, 464–477.

    Google Scholar 

  • Gupta, P., & Gupta, P. (2016). An accurate slap fingerprint based verification system. Neurocomputing, 188, 178–189.

    Google Scholar 

  • Habegger, A., Mueller, L., Goette, J., & Jacomet, M. (2012). A subpixel-based fingerprint reconstruction algorithm. In Proceedings of International New Circuits and Systems Conference (pp. 41–44).

    Google Scholar 

  • Han, H., & Koshimoto, Y. (2008). Characteristics of thermal-type fingerprint sensor. In Proceedings of SPIE Conference on Biometric Technology for Human Identification V.

    Google Scholar 

  • Han, Y., Nam, J., Park, N., & Kim, H. (2006). Resolution and distortion compensation based on sensor evaluation for interoperable fingerprint recognition. In Proceedings of International Joint Conference on Neural Networks (pp. 692–698).

    Google Scholar 

  • Hase, M., & Shimisu, A. (1984). Entry method of fingerprint image using a prism. Transactions of the Institute of Electronic and Communication Engineers of Japan, J67–D, 627–628.

    Google Scholar 

  • Hashido, R., Suzuki, A., Iwata, A., Okamoto, T., Satoh, Y., & Inoue, M. (2003). A capacitive fingerprint sensor chip using low-temperature poly-Si TFTs on a glass substrate and a novel and unique sensing method. IEEE Journal of Solid-State Circuits, 38(2), 274–280.

    Google Scholar 

  • Hiew, B. Y., Teoh, A. B. J., & Pang, Y. H. (2007). Touch–less fingerprint recognition system. In Proceedings of Workshop on Automatic Identification Advanced Technologies (pp. 24–29).

    Google Scholar 

  • Hopper, T., Brislawn, C., & Bradley, J. (1993, February). WSQ grayscale fingerprint image compression specification. Federal Bureau of Investigation.

    Google Scholar 

  • Hopper, T., & Preston, F. (1991). Compression of grey-scale fingerprint images. In Proceedings of SPIE 2242, Wavelet Applications (pp. 309–318).

    Google Scholar 

  • Hu, Z., Li, D., Isshiki, T., & Kunieda, H. (2017). Narrow fingerprint template synthesis by clustering minutiae descriptors. IEICE Transactions on Information and Systems, E100-D(6), 1290–1302.

    Google Scholar 

  • Huang, S., Huang, Y., Yeh, C., Sugiura, N., You, J., & Peng, C. (2015). Design and modeling of 1000ppi fingerprint sensor. In Proceedings of IEEE Sensors Conference.

    Google Scholar 

  • Hwang, H., Lee, H., Jang, B., Kim, H., Lee, T., & Chae, Y. (2017). A 500-dpi transparent on-glass capacitive fingerprint sensor. In Proceedings of SID Symposium Digest of Technical Papers.

    Google Scholar 

  • IDTL - Carlos III University of Madrid. (2018). Multi-sensor performance evaluation.

    Google Scholar 

  • Inglis, C., Manchanda, L., Comizzoll, R., Dickinson, A., Martin, E., Mandis, S., Silveman, P., Weber, G., Ackland, B., & O’Gorman, L. (1998). A robust, 1.8 V, 250 mW, direct contact 500 dpi fingerprint sensor. In Proceedings of IEEE Solid-State Circuits Conference.

    Google Scholar 

  • Integrated Biometrics. (2019). LES film technology. Retrieved July, 2021, from https://integratedbiometrics.com/wp-content/uploads/2020/03/LES-Film-Technology-Whitepaper.pdf.

  • ISO/IEC 19794-4. (2011). ISO/IEC 19794-4:2011—Biometric data interchange formats—Part 4: Finger image data. ISO/IEC Standard.

    Google Scholar 

  • ISO/IEC 15444-1. (2019). Information technology—JPEG 2000 image coding system—Part 1: Core coding system. ISO/IEC Standard.

    Google Scholar 

  • Iula, A. (2019). Ultrasound systems for biometric recognition. Sensors, 19(10), 2317.

    Google Scholar 

  • Jain, A. K., Arora, S. S., Cao, K., Best-Rowden, L., & Bhatnagar, A. (2017). Fingerprint recognition of young children. IEEE Transactions on Information Forensics and Security, 12(7), 1501–1514.

    Google Scholar 

  • Jain, A. K., Prabhakar, S., & Ross, A. (1999). Fingerprint matching: Data acquisition and performance evaluation. Technical Report: MSU TR99-14.

    Google Scholar 

  • Jain, A. K., & Ross, A. (2002). Fingerprint mosaicking. In Proceedings of International Conference on Acoustic Speech and Signal Processing.

    Google Scholar 

  • Jang, J., Elliott, S. J., & Kim, H. (2007). On improving interoperability of fingerprint recognition using resolution compensation based on sensor evaluation. In Proceedings of International Conference on Biometrics. LNCS (Vol. 4642, pp. 455–463).

    Google Scholar 

  • Jeon, Y. E., Lee, Y. J., Jang, M. K., Seo, B. M., Kang, I. H., Hong, M. T., Lee, J. M., Jacques, E., Mohammed-Brahim, T., & Bae, B. S. (2016). Capacitive sensor array for fingerprint recognition. In Proceedings of International Conference on Sensing Technology (ICST) (pp. 1–4).

    Google Scholar 

  • Jeon, G., Lee, S., Lee, S. H., Shim, J., Ra, J., Park, K. W., Yeom, H., Nam, Y., Kwon, O., & Park, S. K. (2019). Highly sensitive active-matrix driven self-capacitive fingerprint sensor based on oxide thin film transistor. Scientific Reports, 9(1), 3216.

    Google Scholar 

  • Jia, X., Yang, X., Zang, Y., Zhang N., & Tian, J. (2012). A cross-device matching fingerprint database from multi-type sensors. In Proceedings of International Conference on Pattern Recognition (ICPR2012), Tsukuba (pp. 3001–3004).

    Google Scholar 

  • Jiang, X., Lu, Y., Tang, H., Tsai, J. M., Ng, E. J., Daneman, M. J., Boser, B. E., & Horsley, D. A. (2017). Monolithic ultrasound fingerprint sensor. Microsystems & Nanoengineering, 3, 17059.

    Google Scholar 

  • Jiang, X., & Ser, W. (2002). Online fingerprint template improvement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8), 1121–1126.

    Google Scholar 

  • Jung, S.M., Nam, J. M., Yang, D. H., & Lee, M. K. (2005). A CMOS integrated capacitive fingerprint sensor with 32-bit RISC microcontroller. IEEE Journal of Solid-State Circuits, 40(8), 1745–1750.

    Google Scholar 

  • Kang, H., Lee, B., Kim, H., Shin, D., & Kim, J. (2003). A study on performance evaluation of fingerprint sensors. In Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (4th ed., pp. 574–583).

    Google Scholar 

  • Kasaei, S., Deriche, M., & Boashash, B. (1997). An efficient quantization technique for wavelet coefficients of fingerprint images. Signal Processing, 62(3), 361–366.

    Google Scholar 

  • Kasaei, S., Deriche, M., & Boashash, B. (2002). A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization. IEEE Transactions on Image Processing, 11(12), 1365–1378.

    Google Scholar 

  • Koda, Y., Higuchi, T., & Jain, A. K. (2016). Advances in capturing child fingerprints: A high resolution CMOS image sensor with SLDR method. In Proceedings of International Conference on Biometrics Special Interest Group (BIOSIG) (pp. 1–4).

    Google Scholar 

  • Krishnasamy, P., Belongie, S., & Kriegman, D. (2011). Wet fingerprint recognition: Challenges and opportunities. In Proceedings of International Joint Conference on Biometrics (IJCB).

    Google Scholar 

  • Kumar, A. (2018). Contactless 3D fingerprint identification. Springer.

    Google Scholar 

  • Kumar, A., & Kwong, C. (2015). Towards contactless, low-cost and accurate 3D fingerprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 681–696.

    Google Scholar 

  • Kwon, D., Yun, I. D., & Lee, S. U. (2010). Rolled fingerprint construction using MRF-based nonrigid image registration. IEEE Transactions on Image Processing, 19(12), 3255–3270.

    Google Scholar 

  • Lazarick, R., & Wolfhope, P. (2016). Evaluation of ‘non-traditional’ fingerprint sensor performance. In Proceedings of Symposium on Technologies for Homeland Security (HST), Waltham, MA (pp. 1–7).

    Google Scholar 

  • Lee, D., Choi, K., Lee, S., & Kim, J. (2003). Fingerprint fusion based on minutiae and ridge for enrollment. In Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (4th ed., pp. 478–485).

    Google Scholar 

  • Lee, D., Choi, K., Choi, H., & Kim, J. (2008). Recognizable-image selection for fingerprint recognition with a mobile-device camera. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 38(1), 233–243.

    Google Scholar 

  • Lee, H. C., & Gaensslen, R. E. (2012). Advances in fingerprint technology (3rd ed.). CRC Press.

    Google Scholar 

  • Lee, C., Lee, S., Kim, J., & Kim, S. J. (2006). Preprocessing of a fingerprint image captured with a mobile camera. In Proceedings of International Conference on Biometrics. LNCS (Vol. 3832, pp. 348–355).

    Google Scholar 

  • Lee, J. W., Min, D. J., Kim, J., & Kim, W. (1999). A 600 dpi capacitive fingerprint sensor chip and image synthesis technique. IEEE Journal of Solid-State Circuits, 34(4), 469–475.

    Google Scholar 

  • Lepley, M. A. (2001). JPEG 2000 and WSQ image compression interoperability. MITRE Technical Report: MTR 00B0000063.

    Google Scholar 

  • Liao, Y., Chang, C., Lin, C., You, J., Hsieh, H., Chen, J., Cho, A., Liu, Y., Lai, Y., Tseng, J., Chiang, M., & Lin, Y. (2015). Flat panel fingerprint optical sensor using TFT technology. In Proceedings of IEEE Sensors Conference.

    Google Scholar 

  • Libert, J., Grantham, J., Bandini, B., Ko, K., Orandi, S., & Watson, C. (2019). Interoperability assessment 2019: Contactless-to-contact fingerprint capture. NIST-IR 8307.

    Google Scholar 

  • Libert, J. M., Orandi, S., & Grantham, J. D. (2012). Comparison of the WSQ and JPEG 2000 image compression algorithms on 500 ppi fingerprint imagery. NIST-IR 7781.

    Google Scholar 

  • Liu, F., & Zhang, D. (2014). 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model. Pattern Recognition, 47(1), 178–193.

    Google Scholar 

  • Liu, F., Zhang, D., Song, C., & Lu, G. (2013). Touchless multiview fingerprint acquisition and mosaicking. IEEE Transactions on Instrumentation and Measurement, 62(9), 2492–2502.

    Google Scholar 

  • Lorch, H., Morguet, P., & Schroder, H. (2004). Fingerprint distortion measurement. In Proceedings of Workshop on Biometric Authentication (in ECCV 2004). LNCS (Vol. 3087, pp. 111–123).

    Google Scholar 

  • Lu, N., Jiang, W., Wu, Q., Geng, D., Li, L., & Liu, M. (2018). A review for compact model of Thin-Film Transistors (TFTs). Micromachines, 9(11), 599.

    Google Scholar 

  • Lugini, L., Marasco, E., Cukic, B., & Gashi, I. (2013). Interoperability in fingerprint recognition: A large-scale empirical study. In Proceedings of Conference on Dependable Systems and Networks Workshop, Budapest, Hungary (pp. 1–6).

    Google Scholar 

  • Mainguet, J. G., Pegulu, M., & Harris, J. B. (1999). Fingerchip: Thermal imaging and finger sweeping in a silicon fingerprint sensor. In Proceedings of Workshop on Automatic Identification Advances Technologies (pp. 91–94).

    Google Scholar 

  • Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., & Jain, A. K. (2002). FVC2002: Second fingerprint verification competition. In Proceedings of International Conference on Pattern Recognition (16th ed.).

    Google Scholar 

  • Malhotra, A., Chopra, S., Vatsa, M., & Singh, R. (2019). User authentication via finger-selfies. In A. Rattani, R. Derakhshani, & A. Ross (Eds.), Selfie Biometrics. Springer.

    Google Scholar 

  • Marasco, E., Lugini, L., Cukic, B., & Bourlai, T. (2013). Minimizing the impact of low interoperability between optical fingerprints sensors. In Proceedings of International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA (pp. 1–8).

    Google Scholar 

  • Marcialis, G. L., & Roli, F. (2004). Fingerprint verification by fusion of optical and capacitive sensors. Pattern Recognition Letters, 25(11), 1315–1322.

    Google Scholar 

  • Mardiansyah, A. Z., Bejo, A., & Hidayat, R. (2018). Fingerprint image reconstruction for swipe sensor using predictive overlap method. In Proceedings of MATEC Web of Conferences (Vol. 154).

    Google Scholar 

  • Mathur, S., Vjay, A., Shah, J., Das, S., & Malla, A. (2016). Methodology for partial fingerprint enrollment and authentication on mobile devices. In Proceedings of International Conference on Biometrics (ICB), Halmstad (pp. 1–8).

    Google Scholar 

  • Miki, H., & Tsuchitani, S. (2017). Structural design points in arrayed micro thermal sensors (III) ~ polymer-based approach. International Journal of Engineering and Technical Research, 7(3), 24–32.

    Google Scholar 

  • Modi, S., Elliott, S., & Kim, H. (2009). Statistical analysis of fingerprint sensor interoperability performance. In Proceedings of International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC, USA (pp. 1–6).

    Google Scholar 

  • Morguet, P., Narr, C., Lorch, H., Wallhoff, F., & Rigoll G. (2004). Reconstruction-free matching for fingerprint sweep sensors. In Proceedings of International Conference on Image Processing (Vol. 2, pp. 1257–1260).

    Google Scholar 

  • Morimura, H., Shigematsu, S., & Machida, K. (2000). A novel sensor cell architecture and sensing circuit scheme for capacitive fingerprint sensors. IEEE Journal of Solid-State Circuits, 37(10) 1300–1306.

    Google Scholar 

  • Nill, N. B. (2006). Test procedures for verifying image quality requirements for Personal Identity Verification (PIV) single finger capture devices. MITRE Technical Report, MTR 060170. Retrieved July, 2021, from http://www2.mitre.org/tech/mtf/spec_test.zip.

  • Nill, N. B., Lepley, M. A., & Bas, C. F. (2016). Test procedures for verifying IAFIS image quality requirements for fingerprint scanners and printers, v1.5. MITRE Technical Report, MTR MTR05B0016R9. Retrieved July, 2021, from http://www2.mitre.org/tech/mtf/spec_test.zip.

  • NIST. (2016). Mobile ID device, best practice recommendation, version 2.1. NIST Special Publication 500–280 v2.1. Retrieved July, 2021, from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-280v2.1.pdf.

  • NIST. (2020). Personal identity verification of federal employees and contractors. Retrieved July, 2021, from https://csrc.nist.gov/projects/piv.

  • Onyshczak, R., & Youssef, A. (2004). Fingerprint image compression and the wavelet scalar quantization specification. In N. Ratha & R. Bolle (Eds.), Automatic fingerprint recognition systems. Springer.

    Google Scholar 

  • Orandi, S., Ko, K., Wood, S. S., Grantham, J. D., & Garris, M. D. (2014). Examination of the impact of fingerprint spatial area loss on matcher performance in various mobile identification scenarios. NIST-IR 7950.

    Google Scholar 

  • Pankanti, S., Prabhakar, S., & Jain, A. K. (2002). On the individuality of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8), 1010–1025.

    Google Scholar 

  • Parziale, G. (2007). Touchless fingerprinting technology. In N. K. Ratha & V. Govindaraju (Eds.), Advances in Biometrics: Sensors, Algorithms and Systems. Springer.

    Google Scholar 

  • Parziale, G., Diaz-Santana, E., & Hauke, R. (2006). The surround ImagerTM: A multi-camera touchless device to acquire 3D rolled-equivalent fingerprints. In Proceedings of International Conference on Biometrics. LNCS (Vol. 3832, pp. 244–250).

    Google Scholar 

  • Ramoser, H., Wachmann, B., & Bischof, H. (2002). Efficient alignment of fingerprint images. In Proceedings of International Conference on Pattern Recognition (16th ed., Vol. 3, pp. 748–751).

    Google Scholar 

  • Ratha, N. K., Connell, J., & Bolle, R. M. (1998). Image mosaicing for rolled fingerprint construction. In Proceedings of International Conference on Pattern Recognition (14th ed., Vol. 2, pp. 1651–1653).

    Google Scholar 

  • Reed, T., & Meier, R. (1990). Taking dermatogyphic prints: A self-instruction manual. American Dermatoglyphics Association Newsletter: Supplement, 9, 18.

    Google Scholar 

  • Ross, A., Dass, S. C., & Jain, A. K. (2006a). Fingerprint warping using ridge curve correspondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 19–30.

    Google Scholar 

  • Ross, A., & Jain, A. K. (2004). Biometric sensor interoperability: A case study in fingerprints. In Proceedings of Workshop on Biometric Authentication (in ECCV 2004). LNCS (Vol. 3087, pp. 134–145).

    Google Scholar 

  • Ross, A., & Nadgir, R. (2006). A calibration model for fingerprint sensor interoperability. In Proceedings of SPIE Conference on Biometric Technology for Human Identification III.

    Google Scholar 

  • Ross, A., & Nadgir, R. (2008). A thin-plate spline calibration model for fingerprint sensor interoperability. IEEE Transaction Data and Knowledge Engineering, 20(8), 1097–1110.

    Google Scholar 

  • Ross, A., Shah, S., & Shah, J. (2006b). Image versus feature mosaicing: A case study in fingerprints. In Proceedings of SPIE Conference on Biometric Technology for Human Identification III.

    Google Scholar 

  • Rowe, R. K., & Nixon, K. A. (2005). Fingerprint enhancement using a multispectral sensor. In Proceedings of SPIE Conference on Biometric Technology for Human Identification II.

    Google Scholar 

  • Rowe, R. K., Nixon, K. A., & Butler, P. W. (2007). Multispectral fingerprint image acquisition. In N. K. Ratha & V. Govindaraju (Eds.), Advances in biometrics: Sensors, algorithms and systems. Springer.

    Google Scholar 

  • Roy, A., Memon, N., & Ross, A. (2017). MasterPrint: Exploring the vulnerability of partial fingerprint-based authentication systems. IEEE Transactions on Information Forensics and Security, 12(9), 2013–2025.

    Google Scholar 

  • Ryu, C., Han, Y., & Kim, H. (2005). Super-template generation using successive Bayesian estimation for fingerprint enrollment. In Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (5th ed., pp. 710–719).

    Google Scholar 

  • Ryu, C., Kim, H., & Jain, A. K. (2006). Template adaptation based fingerprint verification. In Proceedings of International Conference on Pattern Recognition (18th ed., Vol. 4, pp. 582–585).

    Google Scholar 

  • Sankaran, A., Malhotra, A., Mittal, A., Vatsa, M., & Singh, R. (2015). On smartphone camera based fingerphoto authentication. In Proceedings of International Conference on Biometrics: Theory, Applications and Systems (BTAS).

    Google Scholar 

  • Saggese, S., Zhao, Y., Kalisky, T., Avery, C., Forster, D., Duarte-Vera, L. E., Almada-Salazar, L. A., Perales-Gonzalez, D., Hubenko, A., Kleeman, M., Chacon-Cruz, E., & Aronoff-Spencer, E. (2019). Biometric recognition of newborns and infants by non-contact fingerprinting: Lessons learned. Gates Open Research, 3.

    Google Scholar 

  • Sato, N., Machida, K., Morimura, H., Shigematsu, S., Kudou, K., Yano, M., & Kyuragi, H. (2003). MEMS fingerprint sensor immune to various finger surface conditions. IEEE Transactions on Electron Devices, 50(4), 1109–1116.

    Google Scholar 

  • Sato, N., Shigematsu, S., Morimura, H., Yano, M., Kudou, K., Kamei, T., & Machida, K. (2005). Novel surface structure and its fabrication process for MEMS fingerprint sensor. IEEE Transactions on Electron Devices, 52(5), 1026–1032.

    Google Scholar 

  • Schneider, J. K. (2007). Ultrasonic fingerprint sensors. In N. K. Ratha & V. Govindaraju (Eds.), Advances in biometrics: Sensors, algorithms and systems. Springer.

    Google Scholar 

  • Schneider, J. K., Richardson, C. E., Kiefer, F. W., & Govindaraju, V. (2003). On the correlation of image size to system accuracy in automatic fingerprint identification systems. In Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication (4th ed., pp. 895–902).

    Google Scholar 

  • Schneider, J., & Wobschall, D. (1991). Live scan fingerprint imagery using high resolution C–SCAN ultrasonography. In Proceedings of International Carnahan Conference on Security Technology (25th ed., pp. 88–95).

    Google Scholar 

  • Seo, W., Pi, J., Cho, S. H., Kang, S., Ahn, S., Hwang, C., Jeon, H., Kim, J. & Lee, M. (2018). Transparent fingerprint sensor system for large flat panel display. Sensors, 18(1).

    Google Scholar 

  • Setlak, D. R. (1999). Electric field fingerprint sensor apparatus and related methods. US Patent 5963679.

    Google Scholar 

  • Setlak, D. S. (2004). Advances in fingerprint sensors using RF imaging techniques. In N. Ratha & R. Bolle (Eds.), Automatic fingerprint recognition systems (pp. 27–53). Springer.

    Google Scholar 

  • Setlak, D. R., VanVonno, N. W., Newton, M., & Salatino, M. M. (2000). Fingerprint sensor including an anisotropic dielectric coating and associated methods. US Patent 6088471.

    Google Scholar 

  • Sha, L., Zhao, F., & Tang, X. (2007). A two-stage fusion scheme using multiple fingerprint impressions. In Proceedings of International Conference on Image Processing (Vol. 2, pp. 385–388).

    Google Scholar 

  • Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 18(5), 36–58.

    Google Scholar 

  • Sousedik, C., & Breithaupt, R. (2017). Full-fingerprint volumetric subsurface imaging using Fourier-domain optical coherence tomography. In 2017 5th International Workshop on Biometrics and Forensics (IWBF) (pp. 1–6).

    Google Scholar 

  • Stein, C., Nickel, C., & Busch, C. (2012). Fingerphoto recognition with smartphone cameras. In Proceedings of International Conference of Biometrics Special Interest Group (BIOSIG) (pp. 1–12).

    Google Scholar 

  • Tabei, J., Sasajima, H., & Mori, T. (2016). Epoxy molding compound for fingerprint sensor. In Proceedings of International Conference on Electronics Packaging (ICEP) (pp. 553–556).

    Google Scholar 

  • Tang, H., Lu, Y., Fung, S., Tsai, J. M., Daneman, M., Horsley, D. A., & Boser, B. E. (2015). Pulse-echo ultrasonic fingerprint sensor on a chip. In Proceedings of International Conference on Solid-State Sensors, Actuators and Microsystems, Anchorage, AK (pp. 674–677).

    Google Scholar 

  • Tang, H., Lu, Y., Jiang, X., Ng, E. J., Tsai, J. M., Horsley, D. A., & Boser, B. E. (2016). 3-D ultrasonic fingerprint sensor-on-a-chip. IEEE Journal of Solid-State Circuits, 51(11), 2522–2533.

    Google Scholar 

  • Tartagni, M., & Guerrieri, R. (1998). A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE Journal of Solid-State Circuits, 33(1), 133–142.

    Google Scholar 

  • Thomas, D. A., & Bryant, F. R. (2000). Electrostatic discharge protection for integrated circuit sensor passivation. US Patent 6091082.

    Google Scholar 

  • Toh, K. A., Yau, W. Y., Jiang, X., Chen, T. P., Lu, J., & Lim, E. (2001). Minutiae data synthesis for fingerprint identification applications. In Proceedings of International Conference on Image Processing.

    Google Scholar 

  • Tordera, D., Peeters, B., Akkerman, H. B., van Breemen, A. J. J. M., Maas, J., Shanmugam, S., Kronemeijer, A. J., & Gelinck, G. H. (2019). A high resolution thin film fingerprint sensor using a printed organic photodetector. Advanced Material Technologies, 4(11).

    Google Scholar 

  • Tsikos, C. (1982). Capacitive fingerprint sensor. US Patent 4353056.

    Google Scholar 

  • Uz, T., Bebis, G., Erol, A., & Prabhakar, S. (2009). Minutiae-based template synthesis and matching for fingerprint authentication. Computer Vision and Image Understanding, 113(9), 979–992.

    Google Scholar 

  • Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13, 260–269.

    Google Scholar 

  • Wang, L., El-Maksoud, R. H. A., Sasian, J. M., & Valencia, V. S. (2009). Illumination scheme for high-contrast, contactless fingerprint images. Proceedings of SPIE Novel Optical Systems Design and Optimization, 7429(1).

    Google Scholar 

  • Wang, Y., Hassebrook, L. G., & Lau, D. L. (2010). Data acquisition and processing of 3-D fingerprints. IEEE Transactions on Information Forensics and Security, 5(4), 750–760.

    Google Scholar 

  • Wang, Y., Kong, X., Wang, R., Jin, C., & Kim, H. (2018). Study and realization of partial fingerprint mosaicking technology for mobile devices. In Proceedings of Chinese Conference on Biometric Recognition, Cham.

    Google Scholar 

  • Watson, C. I. (1993). NIST Special Database 14, Fingerprint Database. U.S. National Institute of Standards and Technology.

    Google Scholar 

  • Wei, P., Marathe, S., Zhou, J., & Pommerenke, D. (2017). ESD susceptibility evaluation on capacitive fingerprint module. In Proceedings of International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Washington, DC (pp. 175–180).

    Google Scholar 

  • Weingaertner, D., Bellon, O., Silva, L., & Cat, M. (2008). Newborn's biometric identification: Can it be done? In Proceedings of International Conference on Computer Vision Theory and Applications (pp. 200–205).

    Google Scholar 

  • Wilson, C. L., Watson, C. I., & Paek, E. G. (2000). Effect of resolution and image quality on combined optical and neural network fingerprint matching. Pattern Recognition, 33(2), 317–331.

    Google Scholar 

  • Xia, X., & O’Gorman, L. (2003). Innovations in fingerprint capture devices. Pattern Recognition, 36(2), 361–369.

    Google Scholar 

  • Yang, C., & Zhou, J. (2006). A comparative study of combining multiple enrolled samples for fingerprint verification. Pattern Recognition, 39(11), 2115–2130.

    Google Scholar 

  • Yau, W. Y., Chen, T. P., & Morguet, P. (2004). Benchmarking of fingerprint sensors. In Proceedings of Workshop on Biometric Authentication (in ECCV 2004). LNCS (Vol. 3087, pp. 89–99).

    Google Scholar 

  • Yau, W. Y., Toh, K. A., Jiang, X., Chen, T. P., & Lu, J. (2000). On fingerprint template synthesis. In Proceedings of International Conference on Control Automation Robotics and Vision (6th ed.).

    Google Scholar 

  • Yeung, H. W., Moon, Y. S., & Chan, K. C. (2004). Fingerprint registration for small fingerprint sensors. In Proceedings of SPIE Conference on Biometric Technology for Human Identification I.

    Google Scholar 

  • Yin, X., Zhu, Y., & Hu, J. (2021). 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(3), 1085–1091.

    Google Scholar 

  • Young, N. D., Harkin, G., Bunn, R. M., McCulloch, D. J., Wilks, R. W., & Knapp, A. G. (1997). Novel fingerprint scanning arrays using polysilicon tft’s on glass and polymer substrates. IEEE Electron Device Letters, 18(1), 19–20.

    Google Scholar 

  • Zang, Y., Yang, X., Jia, X., Zhang, N., Tian, J., & Zhao, J. (2013). Evaluation of minutia cylinder-code on fingerprint cross-matching and its improvement with scale. In Proceedings of International Conference on Biometrics (ICB), Madrid, Spain (pp. 1–8).

    Google Scholar 

  • Zhang, Y. L., Yang, J., & Wu, H. T. (2005). A hybrid swipe fingerprint mosaicing scheme. In Procedings of International Conference on Audio- and Video-Based Biometric Person Authentication (5th ed., pp. 131–140).

    Google Scholar 

  • Zhang, Y. L., Yang, J., & Wu, H. T. (2006a). Sweep fingerprint sequence reconstruction for portable devices. Electronics Letters, 42(4), 204–205.

    Google Scholar 

  • Zhang, Y. L., Yang, J., & Wu, H. T. (2006b). Coarse-to-fine image registration for sweep fingerprint sensors. Optical Engineering, 45(6).

    Google Scholar 

  • Zhang, Y., Xiao, G., Li, Y., Wu, H., & Huang, Y. (2010). Slap fingerprint segmentation for live-scan devices and ten-print cards. In Proceedings of 20th International Conference on Pattern Recognition, Istanbul (pp. 1180–1183).

    Google Scholar 

  • Zhang, Y., Fang, S., Bian, Y., & Li, Y. (2013). Real-time rolled fingerprint construction based on key-column extraction. In Proceedings of Chinese Conference on Biometric Recognition.

    Google Scholar 

  • Zhao, S., & Wang, X. (2009). Fingerprint Image Compression Based on Directional Filter Banks and TCQ. In Proceedings of International Workshop on Knowledge Discovery and Data Mining, Moscow (pp. 660–663).

    Google Scholar 

  • Zhou, G., Qiao, Y., & Mok, F. (1998). Fingerprint sensing system using a sheet prism. US Patent 5796858.

    Google Scholar 

  • Zhou, J., He, D., Rong, G., & Bian, Z. (2001). Effective algorithm for rolled fingerprint construction. Electronics Letters, 37(8), 492–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maltoni, D., Maio, D., Jain, A.K., Feng, J. (2022). Fingerprint Sensing. In: Handbook of Fingerprint Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-83624-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83624-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83623-8

  • Online ISBN: 978-3-030-83624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics