Skip to main content

Baccharis Terpenoid Compounds

  • Chapter
  • First Online:
Baccharis

Abstract

Baccharis is an important genus of the Asteraceae family comprising more than 440 species, which are used in folk medicine for displaying important biological activities, such as analgesic, anti-inflammatory, antimicrobial, insect antifeedant, and antiparasitic, among others. There are several classes of metabolites produced by Baccharis, from which terpenoid stands out. The main volatile terpenes found in forty Baccharis species are reported in this chapter, pointing out B. dracunculifolia, the botanical source of green propolis, that contains (E)-nerolidol and spathulenol as major compounds, among others, giving the characteristic smell of green propolis. The combination of gas chromatography coupled with mass spectrometry is a powerful tool for the analyses of essential oils combined with the use of the Kovats index to determine the retention indexes using a homologous series of aliphatic hydrocarbons. Regarding diterpenes in Baccharis species, three main carbon skeleton types, kaurane, labdane, and neo-clerodane, have been reported. Many of these diterpenes display antimicrobial, antiparasitic, anti-inflammatory, analgesic, and cytotoxic activities, but the feeding-deterrent potential against insects displayed by neo-clerodane type-diterpenes stands out. In the final part, it is mentioned the triterpene and steroids, which are also found in this genus, and play important role in the reported biological activities of Baccharis species, as well as the occurrence of baccharinoids, a particular type of macrocyclic trichothecenes, which are associated with cattle poisoning in South America fed with B. megapotamica, but also display antiviral, anticancer, antimalarial, and antifungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RP (2017) Identification of essential oil components by gas chromatography / mass spectrometry. Texensis Publishing, Gruver

    Google Scholar 

  • Albuquerque M, Souza EB, Lins M et al (2004) Composition and antimicrobial activity of the essential oil from aerial parts of Baccharis trinervis (Lam.) Pers. ARKIVOC 6:59–65

    Article  Google Scholar 

  • Ambrosio SR, Tirapelli CR, Coutinho ST et al (2004) Role of the carboxylic group in the antispasmodic and vasorelaxant action displayed by kaurenoic acid. J Pharm Pharmacol 56:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio SR, Arakawa NS, Esperandim VR et al (2008) Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae). Phytother Res 22:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Arze JBL, Garneau FX, Collin G et al (2004) Essential oils from Bolivia. I. Asteraceae: Baccharis tricuneata (L.f.) pers. var. ruiziana Cuatrecassas. J Essent Oil Res 16:429–431

    Article  CAS  Google Scholar 

  • Ascari J, Sens SL, Nunes DS et al (2012) Sedative effects of essential oils obtained from Baccharis uncinella. Pharm Biol 50:113–119

    Article  CAS  PubMed  Google Scholar 

  • Bailac PN, Dellacasa AD, Bernasconi HO et al (2001) Essential oil of female plants of Baccharis coridifolia De Candole. J Essent Oil Res 13:23–24

    Article  CAS  Google Scholar 

  • Barud FJ, Lopez S, Tapia A et al (2014) Attractant, sexual competitiveness enhancing and toxic activities of the essential oils from Baccharis spartioides and Schinus polygama on Ceratitis capitata Wiedemann. Ind Crop Prod 62:299–304

    Article  Google Scholar 

  • Batista R, Garcia PA, Castro MA et al (2013) Synthesis, cytotoxicity and antiplasmodial activity of novel ent-kaurane derivatives. Eur J Med Chem 62:168–176

    Article  CAS  PubMed  Google Scholar 

  • Besten MA, Jasinski VCG, Costa A et al (2012) Chemical composition similarity between the essential oils isolated from male and female specimens of each five Baccharis species. J Braz Chem Soc 23:1041–1047

    Article  CAS  Google Scholar 

  • Besten, Aparecida M, Nunes DS et al (2014) Chemical composition of essential oils from cladodes and inflorescences from male and female specimens of Baccharis milleflora. J Essent Oil-Bear Plants 17:899–905

    Article  CAS  Google Scholar 

  • Biurrun F, Juliani RH, Lopez ML et al (2005) Essential oil composition of Baccharis tenelia Hook. et Arn. J Essent Oil Res 17:122–123

    Article  Google Scholar 

  • Bohlmann F, Kramp W, Jakupovic J et al (1982) Naturally-occurring terpene derivatives. Diterpenes from Baccharis Species. Phytochemistry 21:399–403

    Article  CAS  Google Scholar 

  • Boller S, Soldi C, Marques MCA et al (2010) Anti-inflammatory effect of crude extract and isolated compounds from Baccharis illinita DC in acute skin inflammation. J Ethnopharmacol 130:262–266

    Article  CAS  PubMed  Google Scholar 

  • Budel JM, Duarte MR, Doll-Boscardin PM et al (2012) Composition of essential oils and secretory structures of Baccharis anomala, B. megapotamica and B. ochracea. J Essent Oil Res 24:19–24

    Article  CAS  Google Scholar 

  • Campos FR, Bressan J, Jasinski VCG, Zuccolotto T, da Silva LE, Cerqueira LB (2016) Baccharis (Asteraceae): chemical constituents and biological activities. Chem Biodivers 13:1–17

    Article  Google Scholar 

  • Cenal JP, Giordano OS, Rossomando PC et al (1997) Neoclerodane diterpenes from Baccharis crispa. J Nat Prod 60:490–492

    Article  CAS  Google Scholar 

  • Chaverri C, Ciccio JF (2017) Essential oils of Baccharis trinervis (Asteraceae) from Costa Rica. Rev Biol Trop 65:1307–1321

    Article  Google Scholar 

  • Cifuente DA, Borkowski EJ, Sosa ME et al (2002) Clerodane diterpenes from Baccharis sagittalis: insect antifeedant activity. Phytochemistry 61:899–905

    Article  CAS  PubMed  Google Scholar 

  • Cobos MI, Rodriguez JL, Oliva MD et al (2001) Composition and antimicrobial activity of the essential oil of Baccharis notosergila. Planta Med 67:84–86

    Article  CAS  PubMed  Google Scholar 

  • da Costa RM, Bastos JK, Costa MCA et al (2018) In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Phytochemistry 156:214–223

    Article  PubMed  Google Scholar 

  • da Silva AA, Resende DO, Fukui MJ et al (2009a) Constituents of Baccharis dracunculifolia DC (Asteraceae) with in vitro antileishmanial, antiplasmodial and cytotoxic activities. Planta Med 75:949–949

    Google Scholar 

  • da Silva AA, Resende DO, Fukui MJ et al (2009b) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D. C. (Asteraceae). Fitoterapia 80:478–482

    Article  PubMed  Google Scholar 

  • da Silva ER, Lazarotto DC, Pawlowski A et al (2018) Antioxidant evaluation of Baccharis patens and Baccharis psiadioides essential oils. J Essent Oil-Bear Plants 21:485–492

    Article  Google Scholar 

  • de Carvalho MP, Weich H, Abraham WR (2016) Macrocyclic Trichothecenes as antifungal and anticancer compounds. Curr Med Chem 23:23–35

    Article  PubMed  Google Scholar 

  • de Sousa IP, Teixeira MVS, Furtado NAJC (2018) An overview of biotransformation and toxicity of diterpenes. Molecules 23:1–32. https://doi.org/10.3390/molecules23061387

    Article  CAS  Google Scholar 

  • Enriz RD, Baldoni HA, Jauregui EA et al (1994) Structure-activity relationship of clerodane diterpenoids acting as antifeedant agents. J Agric Food Chem 42:2958–2963

    Article  CAS  Google Scholar 

  • Fabiane KC, Ferronatto R, dos Santos AC et al (2008) Physicochemical characteristics of the essential oils of Baccharis dracunculifolia and Baccharis uncinella DC (Asteraceae). Rev Bras Farmacogn 18:197–203

    Article  CAS  Google Scholar 

  • Feresin GE, Tapia A, Gimenez A et al (2003) Constituents of the Argentinian medicinal plant Baccharis grisebachii and their antimicrobial activity. J Ethnopharmacol 89:73–80

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-Rinhel AS, Kabeya LM, Bueno PC et al (2013) Inhibition of the human neutrophil oxidative metabolism by Baccharis dracunculifolia DC (Asteraceae) is influenced by seasonality and the ratio of caffeic acid to other phenolic compounds. J Ethnopharmacol 150:655–664

    Article  CAS  PubMed  Google Scholar 

  • Florao A, Budel JM, Duarte MD et al (2012) Essential oils from Baccharis species (Asteraceae) have anti-inflammatory effects for human cells. J Essent Oil Res 24:561–570

    Article  CAS  Google Scholar 

  • Flores RC, Ponzi M, Ardanaz C et al (2009) Chemical composition of essential oil of Baccharis salicifolia (Ruiz & Pavon) pers. and antibacterial activity. J Chil Chem Soc 54:475–476

    CAS  Google Scholar 

  • Freitas CS, Baggio CH, dos Santos AC et al (2009) Antinociceptive properties of the hydroalcoholic extract, fractions and compounds obtained from the aerial parts of Baccharis illinita DC in mice. Basic Clin Pharmacol 104:285–292

    Article  CAS  Google Scholar 

  • Frizzo CD, Serafini LA, Dellacassa E et al (2001) Essential oil of Baccharis uncinella DC. from Southern Brazil. Flavour Fragr J 16:286–288

    Article  CAS  Google Scholar 

  • Fullas F, Hussain RA, Chai HB et al (1994) Cytotoxic constituents of Baccharis gaudichaudiana. J Nat Prod 57:801–807

    Article  CAS  PubMed  Google Scholar 

  • Funes M, Garro MF, Tosso RD et al (2018a) Antinociceptive effect of neo-clerodane diterpenes obtained from Baccharis flabellata. Fitoterapia 130:94–99

    Article  CAS  PubMed  Google Scholar 

  • Funes M, Tonn CE, Kurina-Sanz M (2018b) In vivo photoinduced [4+2] dimerization of a neo-clerodane diterpene in Baccharis flabellata. ROS and RNS scavenging abilities. J Photoch Photobio B 186:137–143

    Article  CAS  Google Scholar 

  • Furtado NAJC, Veneziani RCS, Ambrósio SR (2017) Farmacognosia. Atheneu, São Paulo

    Google Scholar 

  • Garcia PA, de Oliveira AB, Batista R (2007) Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules 12:455–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia FAD, Tanae MM, Torres LMB et al (2014) A comparative study of two clerodane diterpenes from Baccharis trimera (Less.) DC. on the influx and mobilization of intracellular calcium in rat cardiomyocytes. Phytomedicine 21:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Guo YQ, Li YS, Xu J et al (2006) Bioactive ent-clerodane diterpenoids from the aerial parts of Baccharis gaudichaudiana. J Nat Prod 69:274–276

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Li Y, Xu J et al (2007) Clerodane diterpenoids and flavonoids with NGF-potentiating activity from the aerial parts of Baccharis gaudichaudiana. Chem Pharm Bull 55:1532–1534

    Article  CAS  Google Scholar 

  • Hadad M, Zygadlo JA, Lima B et al (2007) Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii Hieron (Asteraceae). J Chil Chem Soc 52:1186–1189

    Article  CAS  Google Scholar 

  • Hikawczuk VEJ, Verrilli MAL, Borkowski EJ et al (2006) Antifeedant activity of neo-clerodane diterpenes from Baccharis flabellata Hook & Arn var. flabellata toward Tribolium castaneum Herbst: structure-activity relationships. Nat Prod Res 20:813–819

    Article  CAS  Google Scholar 

  • Hikawczuk VEJ, Saad JR, Giordano OS et al (2008) Insect growth regulatory effects of linear diterpenoids and derivatives from Bacchatis thymifolia. J Nat Prod 71:190–194

    Article  Google Scholar 

  • Jakupovic J, Schuster A, Ganzer U et al (1990) Sesquiterpenes and diterpenes from Baccharis species. Phytochemistry 29:2217–2222

    Article  CAS  Google Scholar 

  • Januario AH, Santos SL, Marcussi S et al (2004) Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties. Chem Biol Interact 150:243–251

    Article  CAS  PubMed  Google Scholar 

  • Kato FH, Viana NI, Santini CB et al (2012) Assessment of the in vitro and in vivo genotoxic and antigenotoxic effects of pimaradienoic acid in mammalian cells. Mutat Res Genet Toxicol Environ Mutagen 749:87–92

    Google Scholar 

  • Kurdelas RR, Lopez S, Lima B et al (2012) Chemical composition, anti-insect and antimicrobial activity of Baccharis darwinii essential oil from Argentina, Patagonia. Ind Crop Prod 40:261–267

    Article  CAS  Google Scholar 

  • Lage TC, Montanari RM, Fernandes SA et al (2015) Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Exp Parasitol 148:24–29

    Google Scholar 

  • Lago JHG, Romoff P, Favero OA et al (2008) Composition of essential oils from the leaves of six species of the Baccharis genus from “Campos de altitude” of the Atlantic Forest of Sao Paulo. Quim Nova 31:727–730

    Article  CAS  Google Scholar 

  • Leandro LF, Oliveira Cardoso MJ, Caetano Silva SD et al (2014) Antibacterial activity of Pinus elliottii and its major compound, dehydroabietic acid, against multidrug-resistant strains. J Med Microbiol 63:1649–1653

    Article  CAS  PubMed  Google Scholar 

  • Li RT, Morris-Natschke SL, Lee KH (2016) Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep 33:1166–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linstrom PJ, Mallard WG (eds) (2018) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, National Institute of Standards and Technology. https://doi.org/10.18434/T4D303. Accessed 11 Jun 2018.

  • Liu N, Wu C, Wang P et al (2018) Diterpenoids from liverworts and their biological activities. Curr Org Chem 22:1847–1860

    Article  CAS  Google Scholar 

  • Marostica MR, Daugsch A, Moraes CS et al (2008) Comparison of volatile and polyphenolic compounds in Brazilian green propolis and its botanical origin Baccharis dracunculifolia. Cienc Tecnol Aliment 28:178–181

    Google Scholar 

  • Mizokami SS, Arakawa NS, Ambrosio SR et al (2012) Kaurenoic acid from Sphagneticola trilobata inhibits inflammatory pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 75:896–904

    Article  CAS  PubMed  Google Scholar 

  • Negreiros MD, Pawlowski A, Zini CA et al (2016) Antimicrobial and antibiofilm activity of Baccharis psiadioides essential oil against antibiotic-resistant Enterococcus faecalis strains. Pharm Biol 54:3272–3279

    Google Scholar 

  • Oliva MM, Zunino MP, Lopez ML et al (2007) Variation in the essential oil composition and antimicrobial activity of Baccharis spartioides (H. et A.) J. Rimy from three regions of Argentina. J Essent Oil Res 19:509–513

    Article  CAS  Google Scholar 

  • Parreira NA, Magalhaes LC, Morais DR et al (2010) Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem Biodivers 7:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Passero LFD, Bonfim-Melo A, Corbett CEP et al (2011) Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitol Res 108:529–536

    Article  PubMed  Google Scholar 

  • Pereira CB, Farago PV, Borsato DM et al (2016) Chemical composition and biological activities of Baccharis milleflora essential oil. Lat Am J Pharm 35:2225–2233

    CAS  Google Scholar 

  • Pereira CB, Kanunfre CC, Farago PV et al (2017) Cytotoxic mechanism of Baccharis milleflora (less.) DC. Essential oil. Toxicol In Vitro 42:214–221

    Article  CAS  PubMed  Google Scholar 

  • Perera WH, Bizzo HR, Gama PE et al (2017) Essential oil constituents from high altitude Brazilian species with antimicrobial activity: Baccharis parvidentata Malag., Hyptis monticola Mart. ex Benth. and Lippia origanoides Kunth. J Essent Oil Res 29:109–116

    Article  CAS  Google Scholar 

  • Possebon MI, Mizokami SS, Carvalho TT et al (2014) Pimaradienoic acid inhibits inflammatory pain: inhibition of NF-kappa B activation and cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 77:2488–2496

    Article  CAS  PubMed  Google Scholar 

  • Salazar GJT, de Sousa JP, Lima CNF et al (2018) Phytochemical characterization of the Baccharis dracunculifolia DC (Asteraceae) essential oil and antibacterial activity evaluation. Ind Crop Prod 122:591–595

    Article  CAS  Google Scholar 

  • San-Martin A, Astudillo L, Gutierrez M et al (2010) 13-epi-neoclerodanes from Baccharis marginalis. J Chil Chem Soc 55:118–120

    Article  CAS  Google Scholar 

  • Sarah KJ-C, Andrew TK, David TF (2014) Synthetic routes to methylerythritol phosphate pathway intermediates and downstream isoprenoids. Curr Org Chem 18:1050–1072

    Article  Google Scholar 

  • Sayuri VA, Romoff P, Favero OA et al (2010) Chemical composition, seasonal variation, and biosynthetic considerations of essential oils from Baccharis microdonta and B. elaeagnoides (Asteraceae). Chem Biodivers 7:2771–2782

    Article  CAS  PubMed  Google Scholar 

  • Severiano ME, Simão MR, Porto TS et al (2010) Anticariogenic properties of ent-pimarane diterpenes obtained by microbial transformation. Molecules 15:8553–8566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibamoto T (1987) Retention indices in essential oil analysis, capillary gas chromatography in essential oil analysis. Huethig Verlag, New York, pp 259–274

    Google Scholar 

  • Simirgiotis MJ, Quispe C, Borquez J et al (2016) High resolution metabolite fingerprinting of the resin of Baccharis tola Phil. from the Atacama Desert and its antioxidant capacities. Ind Crop Prod 94:368–375

    Article  CAS  Google Scholar 

  • Simonsen HT, Riedel C, Gade LB et al (2009) Chemical composition and antibacterial activity of the leaf essential oil of Baccharis magellanica (Lam.) Pers. and Baccharis elaeoides Remy from Chile. J Essent Oil Res 21:377–380

    Article  CAS  Google Scholar 

  • Sobrinho ACN, de Souza EB, Rocha MFG et al (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind Crop Prod 84:108–115

    Article  CAS  Google Scholar 

  • Sosa ME, Tonn CE, Giordano OS (1994) Insect antifeedant activity of clerodane diterpenoids. J Nat Prod 57:1262–1265

    Article  CAS  PubMed  Google Scholar 

  • Sosa ME, Lancelle HG, Tonn CE et al (2012) Insecticidal and nematicidal essential oils from Argentinean Eupatorium and Baccharis spp. Biochem Syst Ecol 43:132–138

    Google Scholar 

  • Tirapelli CR, Ambrosio SR, de Oliveira AM et al (2010) Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia 81:690–702

    Article  CAS  PubMed  Google Scholar 

  • Tischer B, Vendruscolo RG, Wagner R et al (2017) Effect of grinding method on the analysis of essential oil from Baccharis articulata (Lam.) Pers. Chem Pap 71:753–761

    Article  CAS  Google Scholar 

  • Torres LMB, Gamberini MT, Roque NF et al (2000) Diterpene from Baccharis trimera with a relaxant effect on rat vascular smooth muscle. Phytochemistry 55:617–619

    Article  CAS  PubMed  Google Scholar 

  • Trombin-Souza M, Trombin-Souza M, Amaral W et al (2017) Chemical composition of the essential oils of Baccharis species from southern Brazil: a comparative study using multivariate statistical analysis. J Essent Oil Res 29:400–406

    Article  CAS  Google Scholar 

  • Ueno AK, Barcellos AF, Costa-Silva TA et al (2018a) Antitrypanosomal activity and evaluation of the mechanism of action of diterpenes from aerial parts of Baccharis retusa (Asteraceae). Fitoterapia 125:55–58

    Article  CAS  PubMed  Google Scholar 

  • Ueno AK, Barcellos AF, Grecco SD et al (2018b) Sesquiterpenes, diterpenes, alkenyl p-coumarates, and flavonoid from the aerial parts of Baccharis retusa (Asteraceae). Biochem Syst Ecol 78:39–42

    Article  CAS  Google Scholar 

  • Valarezo E, Rosillo M, Cartuche L et al (2013) Chemical composition, antifungal and antibacterial activity of the essential oil from Baccharis latifolia (Ruiz & Pav.) Pers. (Asteraceae) from Loja, Ecuador. J Essent Oil Res 25:233–238

    Article  CAS  Google Scholar 

  • Valarezo E, Rosales J, Morocho V et al (2015) Chemical composition and biological activity of the essential oil of Baccharis obtusifolia Kunth from Loja, Ecuador. J Essent Oil Res 27:212–216

    Article  CAS  Google Scholar 

  • van Baren CM, Lira PD, Bandoni AL et al (2002) Composition of the essential oil of pichana Baccharis spartioides (Hook. et Arn.) Remy (Compositae) from different populations of the Patagonia, Argentina. J Essent Oil Res 14:183–186

    Article  Google Scholar 

  • Vannini AB, Santos TG, Fleming AC et al (2012) Chemical characterization and antimicrobial evaluation of the essential oils from Baccharis uncinella DC and Baccharis semiserrata DC (Asteraceae). J Essent Oil Res 24:547–554

    Article  CAS  Google Scholar 

  • Veneziani RCS, Ambrósio SR, Martins CHG, Lemes DC, Oliveira LC (2017) Antibacterial potential of diterpenoids. In: Atta-ur-Rahman BT-S (ed) Studies in natural products chemistry. Elsevier, Dordrecht, pp 109–139. https://doi.org/10.1016/B978-0-444-63929-5.00004-8

    Chapter  Google Scholar 

  • Verdi LG, Brighente IMC, Schripsema J et al (2004) Kaurene diterpenes and flavonoids from Baccharis illinita flowers. Biochem Syst Ecol 32:837–840

    Article  CAS  Google Scholar 

  • Wachter GA, Montenegro G, Timmermann BN (1999) Diterpenoids from Baccharis pingraea. J Nat Prod 62:307–308

    Article  CAS  PubMed  Google Scholar 

  • Xavier VB, Vargas RMF, Minteguiaga M, Umpiérrez N, Dellacassa E, Cassel E (2013) Evaluation of the key odorants of Baccharis anomala DC essential oil: new applications for known products. Ind Crop Prod 49:492–496

    Article  Google Scholar 

  • Xu WH, Liu WY, Liang Q (2018) Chemical constituents from Croton species and their biological activities. Molecules 23:1–38. https://doi.org/10.3390/molecules23092333

    Article  CAS  Google Scholar 

  • Yamamoto ES, Campos BLS, Laurenti MD et al (2014) Treatment with triterpenic fraction purified from Baccharis uncinella leaves inhibits Leishmania (Leishmania) amazonensis mazonensis spreading and improves Th1 immune response in infected mice. Parasitol Res 113:333–339

    Google Scholar 

  • Zunino MP, Newton MN, Maestri DM et al (1998) Essential oils of three Baccharis species. Planta Med 64:86–87

    Article  CAS  PubMed  Google Scholar 

  • Zunino MP, Lopez ML, Faillaci SM et al (2000) Essential oil of Baccharis cordobensis Heering. Flavour Fragr J 15:151–152

    Article  CAS  Google Scholar 

  • Zunino MP, Lopez ML, Zygadlo JA et al (2004) Essential oil composition of Baccharis articulata (Lam.) Pers. J Essent Oil Res 16:29–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to São Paulo Research Foundation – FAPESP (process number 2017/04138-8), CNPq (processes numbers 306441/2017-9 and 306432/2017-0), and CAPES for funds and grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Ricardo Ambrósio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambrósio, S.R., Santos, M.F.C., Oliveira, L.C., Bassi, A.L., Bastos, J.K., Veneziani, R.C.S. (2021). Baccharis Terpenoid Compounds. In: Fernandes, G.W., Oki, Y., Barbosa, M. (eds) Baccharis. Springer, Cham. https://doi.org/10.1007/978-3-030-83511-8_13

Download citation

Publish with us

Policies and ethics