Skip to main content

The Spectrum of Berberine Antibacterial and Antifungal Activities

  • 245 Accesses


Isoquinoline alkaloid berberine is a typical multitarget or multicomponent molecule of botanical origin. It is extensively used for hundreds of years in the treatment of various infectious diseases and in traditional medicine. Numerous studies from academic institutions and pharma industry reported several pharmacological effects and efficacy of berberine in the treatment of inflammation, cancer, and diabetes. The plethora of beneficial activities rely on the existence of multiple mechanisms of its action, mainly related to cell cycle arrest and apoptosis. Considering its antifungal and antibacterial activities, berberine targets bacterial cell walls and cell membranes, as well as DNA and RNA. It disturbs membrane potential and rigidity by forming reactive oxygen species (ROS). The influence on protein expression is evident in affecting efflux pumps. Berberine also potentiates activity of several antibiotics and antifungal drugs, demonstrating synergistic antibacterial activity, and has detrimental effect on biofilm matrix of several pathogens, including multidrug-resistant (MDR) bacteria and yeasts. In this chapter, we focus on the antimicrobial effects of berberine and plausible mechanisms of actions involved, and give future perspective on the potential of berberine-based therapy.


  • Antibacterial
  • Antifungal
  • Mechanism
  • Berberine
  • Multidrug resistance

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-83504-0_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-83504-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2



Alkaline phosphatase


American Type Culture Collection


Cyclic adenosine monophosphate–dependent protein kinase


Fungal sterol 14α-demethylase


Deoxyribonucleic acid


ETS (erythroblast transformation-specific)-related gene

ESKAPE pathogens:

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species


Glutathione peroxidase


Glutathione reductase


Reduced glutathione/oxidized glutathione ratio


Heat shock factor 1


Liquid chromatography–tandem mass spectrometry


Mitogen-activated protein kinase


Multidrug resistant


Minimal inhibitory concentration


Methicillin-resistant Staphylococcus aureus


Methicillin-sensitive Staphylococcus aureus




Reactive oxygen species


Scanning electron microscopy


Superoxide dismutase


Transmission electron microscopy


Yeast extract–peptone–dextrose


  • Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926

    CrossRef  Google Scholar 

  • Bhadra K, Kumar GS (2011) Therapeutic potential of nucleic acid binding isoquinoline alkaloids: binding aspects and implications for drug design. Med Res Rev 31:821–862

    CAS  CrossRef  Google Scholar 

  • Chu M, Zhang MB, Liu YC, Kang JR, Chu ZY, Yin KL, Ding LY, Ding R, Xiao RX, Yin YN, Liu XY, Wang YD (2016) Role of berberine in the treatment of methicillin-resistant Staphylococcus aureus infections. Sci Rep 22:24748

    CrossRef  Google Scholar 

  • Creasey WA (1979) Biochemical effects of berberine. Biochem Pharmacol 28:1081–1084

    CAS  CrossRef  Google Scholar 

  • da Silva AR, de Andrade Neto JB, da Silva CR, Campos RDS, Costa Silva RA, Freitas DD, do Nascimento FBSA, de Andrade LND, Sampaio LS, Grangeiro TB, Magalhães HIF, Cavalcanti BC, de Moraes MO, Nobre Júnior HV (2016) Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother 60:3551–3557

    CrossRef  Google Scholar 

  • De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020a) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 13:e00181–e00119

    Google Scholar 

  • De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020b) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181–e00119

    CrossRef  Google Scholar 

  • Dhamgaye S, Devaux F, Vandeputte P, Khandelwal NK, Sanglard D, Mukhopadhyay G et al (2014) Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One 9:e104554.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Du G-F, Le Y-J, Sun X, yang X-Y, He Q-Y (2020) Proteomic investigation into the cation mechanism of berberine against Streptococcus pyogens. J Proteome 215:103666

    CAS  CrossRef  Google Scholar 

  • Fan X, Wang J, Hou J et al (2015) Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 13:92.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gaoi Y, Wang F, Song Y, Liu H (2020) The status of and trends in the pharmacology of berberine. A bibliometric review [1985-2018]. Chin Med 15:7

    CrossRef  Google Scholar 

  • Garcerá A, Casas C, Herrero E (2010) Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses. FEMS Yeast Res 10:422–431

    CrossRef  Google Scholar 

  • Guna V, Saha L, Bhatia A et al (2018) Anti-oxidant and anti-apoptotic effects of berberine in pentylenetetrazole-induced kindling model in rat. J Epilepsy Res 8(2):66–73.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • He C, Yin L (2015) The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae. Nat Prod Res 29:2203–2206

    CrossRef  Google Scholar 

  • Hua X, Chi W, Su L, Li J, Zhang Z, Yuan X (2017) ROS-induced oxidative injury involved in pathogenesis of fungal keratitis via p38 MAPK activation. Sci Rep 7(1):10421.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Huang KC, Williams WM (1999. Antibacterial, antiviral, and antifungal herbs) The pharmacology of Chinese herbs. CRC Press, New York, pp 381–383

    Google Scholar 

  • Imenshahidi M, Hosseinzade H (2019) Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res 33:504–523.

    CrossRef  PubMed  Google Scholar 

  • Iwazaki RS, Endo EH, Ueda-Nakamura T, Nakamura CV, Garcia LB, Filho BP (2010) In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek 97:201–205

    CAS  CrossRef  Google Scholar 

  • Jantová S, Cipák L, Cernáková M, Kost'álová D (2003) Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J Pharm Pharmacol 55:1143–1149

    CrossRef  Google Scholar 

  • Kudera T, Doskocil I, Salmonova H, Petrtyl M, Skrivanova E, Kokoska L (2020) In vitro selective growth-inhibitory activities of phytochemicals, synthetic phytochemical analogs, and antibiotics against diarrheagenic/probiotic bacteria and cancer/normal intestinal cells. Pharmaceuticals (Basel) 13:233.

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Kyoumi N, Shinsuke S, Taizo H (1990) Effects of crude drugs and berberine hydrochloride on the activities of fungi. J Prosthet Dent 64:691–694

    Google Scholar 

  • Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264.

    CAS  CrossRef  PubMed  Google Scholar 

  • Li Y, Huang J, Li L, Liu L (2017) Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem 2017:1657–1669

    CrossRef  Google Scholar 

  • Liang R, Yong X, Duan Y, Tan Y-h, Zeng P, Zhou Z-y, Jiang Y, Wang S-h, Jiang Y-p, Huang X-c, Dong Z-h, Hu T-t, Shi H-q, Li N (2014) Potent in vitro synergism of fusidic acid (FA) and berberine chloride (BBR) against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). World J Microbiol Biotechnol 30:2861–2869

    CAS  CrossRef  Google Scholar 

  • Midkiff J, Borochoff-Porte N, White D, Johnson DI (2011) Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signalling pathways. PLoS One.

  • Nair R, Shariq M, Dhamgaye S, Mukhopadhyay CK, Shaikh S, Rajendra P (2017) Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense. Biochim Biophys Acta Mol Cell Res 1864:345–354

    CAS  CrossRef  Google Scholar 

  • Nakamoto K, Sadamori S, Hamada T (1990) Effects of crude drugs and berberine hydrochloride on the activities of fungi. J Prosthet Dent 64:691–694

    CAS  CrossRef  Google Scholar 

  • Nicholls S, MacCallum DM, Kaffarnik FAR, Selway L, Peck SC, Brown AJP (2011) Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genet Biol 48:297–305

    CAS  CrossRef  Google Scholar 

  • Oh K-B, Oh M-N, Kim J-G, Shin D-S, Shin J (2006) Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl Microbiol Biotechnol 70:102–106

    CAS  CrossRef  Google Scholar 

  • Oliveira WF, Silva PMS, Silva RCS et al (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98:111–117

    Google Scholar 

  • Peng L, Kang S, Yin Z, Jia R, Song X, Li L, Li Z, Zou Y, Liang X, Li L, He C, Ye G, Yin L, Shi F, Lv C, Jing B (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol 1:5217–5223

    Google Scholar 

  • Poopedi E, Marimani M, AlOmar SY, Aldahmash B, Ahmad A (2020) Modulation of antioxidant defence system in response to berberine in Candida albicans. Yeast:1–13.

  • Singh B, Katare AK (2020) Botanical sources, chemistry aspects and biological functions of berberine: an updated critical review. In: Singh B (ed) Botanical leads for drug discovery. Springer Nature Ltd, Singapore

    CrossRef  Google Scholar 

  • Su Y-H, Tang W-C, Cheng Y-W, Sia P, Huang C-C, Lee Y-C, Jiang H-Y, Wu M-H, Lai I-L, Lee J-W et al (2015) Targeting of multiple oncogenic signalingsignalling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. Biochim Biophys Acta Mol Cell Res 1853:2261–2272

    CAS  CrossRef  Google Scholar 

  • Sun D, Courtney HS, Beachey EH (1988) Berberine sulfate blocks adherence of streptococcus pyogenes to epithelial cells, fibronectin, and hexadecane. Antimicrob Agents Chemother 32:1370–1374

    CAS  CrossRef  Google Scholar 

  • Wang D, Yu L, Xiang H, Fan J, He L, Guo N, Feng H, Deng X (2008) Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol Lett 279:217–225

    CAS  CrossRef  Google Scholar 

  • Wang X, Jiang S, Sun Q (2011) Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Exp Biol Med 236(7):859–866.

    CAS  CrossRef  Google Scholar 

  • Wang S, Setlow B, Setlow P, Yong-qing L (2016) Uptake and levels of the antibiotic berberine in individual dormant and germinating Clostridium difficile and Bacillus cereus spores as measured by laser tweezers Raman spectroscopy. J Antimicrob Chemother 71:1540–1546

    CAS  CrossRef  Google Scholar 

  • Wang Y, Liu Y, Du X, Ma H, Yao J (2020) The anti-cancer mechanisms of berberine: a review. Cancer Manag Res 12:695–702.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wojtyczka RD, Orlewska K, Kępa M, Idzik D, Dziedzic A, Mularz T, Krawczyk M, Miklasińska M, Wąsik TJ (2014) Biofilm formation and antimicrobial susceptibility of Staphylococcus epidermidis strains from a hospital environment. Int J Environ Res Public Health 11:4619–4633

    CrossRef  Google Scholar 

  • Xiao CW, Ji QA, Rajput ZI, Wei Q, Liu Y, Bao GL (2014) Antifungal efficacy of Phellodendron amurense ethanol extract against Trichophyton mentagrophytes in rabbits. Pak Vet J 34:219–223

    Google Scholar 

  • Xiao CW, Liu Y, Wei Q et al (2019) Inhibitory effects of berberine hydrochloride on Trichophyton mentagrophytes and the underlying mechanisms. Molecules 24(4):742.

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Yadav RC, Kumar GS, Bhandra K, Giri P, Sinha R, Pal S, Maiti M (2005) Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Bioorg Med Chem 13:165–174

    CAS  CrossRef  Google Scholar 

  • Yao J, Kong W, Jiang J (2015) Learning from berberine: treating chronic diseases through multiple targets. Sci China Life Sci 58(9):854–859. PMID: 24174332

    CAS  CrossRef  PubMed  Google Scholar 

  • Yi Z-B, Yu Y, Liang Y-Z, Zeng B (2007) Evaluation of the amicrobial mode of berberine by LC/ESI_MS combined with principal component analysis. J Pharm Biomed Anal 44:301–304

    CAS  CrossRef  Google Scholar 

  • Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO (2005) Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 8:454–461

    CAS  CrossRef  Google Scholar 

  • Zhang X, Sun X, Wu J, Wu Y, Wang Y, Hu X, Wang X (2020) Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Front Microbiol 22:621

    CrossRef  Google Scholar 

  • Zhou X, Yang C, Li Y, Liu X, Wang Y (2015) Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection. Genet Mol Res 14:9683–9692

    CAS  CrossRef  Google Scholar 

  • Zhuang W, Li T, Wang C, Shi X, Li Y, Zhang S, Zhao Z, Dong H, Qiao Y (2018) Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis. Free Radic Biol Med 121:127–135. PMID: 29715550

    CAS  CrossRef  PubMed  Google Scholar 

  • Zorić N, Kopjar N, Bobnjarić I, Horvat I, Tomić S, Kosalec I (2016) Antifungal activity of Oleuropein against Candida albicans-the in vitro study. Molecules 21:1631.

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Zorić N, Kosalec I, Tomić S, Bobnjarić I, Jug M, Vlainić T, Vlainić J (2017) Membrane of Candida albicans as a target of berberine. BMC Complement Altern Med 17:268.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Ivan Kosalec or Josipa Vlainić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kosalec, I., Jembrek, M.J., Vlainić, J. (2022). The Spectrum of Berberine Antibacterial and Antifungal Activities. In: Rai, M., Kosalec, I. (eds) Promising Antimicrobials from Natural Products. Springer, Cham.

Download citation