Skip to main content

Using Contour Trees in the Analysis and Visualization of Radio Astronomy Data Cubes

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization VI

Abstract

The current generation of radio and millimeter telescopes, particularly the Atacama Large Millimeter Array (ALMA), offers enormous advances in observing capabilities. While these advances represent an unprecedented opportunity to facilitate scientific understanding, the increased complexity in the spatial and spectral structure of these ALMA data cubes lead to challenges in their interpretation. In this paper, we perform a feasibility study for applying topological data analysis and visualization techniques never before tested by the ALMA community. Using techniques based on contour trees, we seek to improve upon existing analysis and visualization workflows of ALMA data cubes, in terms of accuracy and speed in feature extraction. We review our development process in building effective analysis and visualization capabilities for the astrophysicists. We also summarize effective design practices by identifying domain-specific needs of simplicity, integrability, and reproducibility, in order to best target and service the large astrophysics community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based upon sublevel set filtration, topological features typically appear as points in the upper left corner of the persistence diagram; points in the lower right corner correspond to features in superlevel set filtration and/or extended persistence [17], which are not the focus of this paper.

References

  1. Partnership, A.L.M.A., Brogan, C.L., et al.: First results from high angular resolution alma observations toward the HL Tau region. ArXiv:1503.02649 (2015)

  2. Partnership, A.L.M.A., Vlahakis, C., et al.: ALMA long baseline observations of the strongly lensed submillimeter galaxy HATLAS \(J090311.6\) + \(003906\) at \(z\) = \(3.042\). ArXiv:1503.02652 (2015)

  3. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of the 8th Conference on Visualization, pp. 167–ff (1997)

    Google Scholar 

  4. Barth, A.J., et al.: Toward precision black hole masses with ALMA: NGC 1332 as a case study in molecular disk dynamics. Astrophys. J. 823(1), 51 (2016)

    Article  Google Scholar 

  5. Basmajian, A., Saric, D.: Geodesically complete hyperbolic structures. arxiv.org/abs/1508.02280 (2016)

  6. Belloche, A., Garrod, R.T., Müller, H.S.P., Menten, K.M.: Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345, 1584–1587 (2014)

    Article  Google Scholar 

  7. Berry, D.: Fellwalker - a clump identification algorithm. Astron. Comput. 10, 22–31 (2015)

    Article  Google Scholar 

  8. Bolatto, A.D., et al.: Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013)

    Article  Google Scholar 

  9. Carr, H., Sewell, C., Lo, L.T., Ahrens, J.: Hybrid data-parallel contour tree computation. In: Turkay, C., Wan, T.R. (eds.) Computer Graphics and Visual Computing. The Eurographics Association (2016)

    Google Scholar 

  10. Carr, H., Snoeyink, J.: Path seeds and flexible isosurfaces using topology for exploratory visualization. In: Proceedings of the Symposium on Data Visualisation (2003)

    Google Scholar 

  11. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(3), 75–94 (2003)

    Article  MathSciNet  Google Scholar 

  12. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proceedings of the 15th IEEE Visualization, pp. 497–504 (2004)

    Google Scholar 

  13. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: simplifying and displaying scalar topology using the contour tree. Comput. Geom. Theory Appl. 43(1), 42–58 (2010)

    Article  MathSciNet  Google Scholar 

  14. Carr, H., Weber, G., Sewell, C., Ahrens, J.: Parallel peak pruning for scalable SMP contour tree computation. In: IEEE Symposium on Large Data Analysis and Visualization (2016)

    Google Scholar 

  15. Chiang, Y.J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output-sensitive construction of contour trees using monotone paths. Comput. Geom. 30(2), 165–195 (2005)

    Article  MathSciNet  Google Scholar 

  16. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  17. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)

    Article  MathSciNet  Google Scholar 

  18. Colombo, D., Rosolowsky, E., Ginsburg, A., Duarte-Cabral, A., Hughes, A.: Graph-based interpretation of the molecular interstellar medium segmentation. Mon. Not. R. Astron. Soc. 454(2), 2067–2091 (2015)

    Article  Google Scholar 

  19. De Breuck, C., et al.: ALMA resolves turbulent, rotating [CII] emission in a young starburst galaxy at \(z\) = 4.8. Astron. Astrophys. 565, A59 (2014)

    Article  Google Scholar 

  20. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  21. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  22. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification of functions on 2-manifolds. In: Proceedings of the 22nd Annual ACM Symposium on Computational Geometry, pp. 127–134 (2006)

    Google Scholar 

  23. Ginsburg, A., et al.: Dense gas in the galactic central molecular zone is warm and heated by turbulence. Astron. Astrophys. 586, A50 (2016)

    Article  Google Scholar 

  24. Goodman, A.A., et al.: A role for self-gravity at multiple length scales in the process of star formation. Nature 457(7225), 63–66 (2009)

    Article  Google Scholar 

  25. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Contour forests: fast multi-threaded augmented contour trees. In: IEEE Symposium on Large Data Analysis and Visualization (2016)

    Google Scholar 

  26. Hancock, P.J., Murphy, T., Gaensler, B.M., Hopkins, A., Curran, J.R.: Compact continuum source-finding for next generation radio surveys. Mon. Not. R. Astron. Soc. 422(2), 1812–1824 (2012)

    Article  Google Scholar 

  27. Hopkins, A.M., et al.: The ASKAP/EMU source finding data challenge. Publ. Astron. Soc. Aust. 32, e037 (2015)

    Article  Google Scholar 

  28. Johnson, K.E., et al.: The physical conditions in a pre-super star cluster molecular cloud in the antennae galaxies. Astrophys. J. 806, 35 (2015)

    Article  Google Scholar 

  29. Joye, W., Mandel, E.: New features of SAOImage DS9. In: Astronomical Data Analysis Software and Systems XII, vol. 295, p. 489 (2003)

    Google Scholar 

  30. van Kreveld, M., van Oostrum, R., Bajaj, C.L., Pascucci, V., Schikore, D.: Contour trees and small seed sets for isosurface traversal. In: Proceedings of the 19th Annual Symposium on Computational Geometry, pp. 212–220 (1997)

    Google Scholar 

  31. Leroy, A.K., et al.: ALMA reveals the molecular medium fueling the nearest nuclear starburst. Astrophys. J. 801, 25 (2015)

    Article  Google Scholar 

  32. Liu, H.B., et al.: ALMA resolves the spiraling accretion flow in the luminous \(ob\) cluster-forming region \(g33.92\)+\(0.11\). Astrophys. J. 804, 37 (2015)

    Article  Google Scholar 

  33. Maadasamy, S., Doraiswamy, H., Natarajan, V.: A hybrid parallel algorithm for computing and tracking level set topology. In: Proceedings of the 19th International Conference on High Performance Computing, pp. 1–10 (2012)

    Google Scholar 

  34. McKenna, S., Mazur, D., Agutter, J., Meyer, M.: Design activity framework for visualization design. IEEE Trans. Vis. Comput. Graph. 20, 2191–2200 (2014)

    Article  Google Scholar 

  35. McMullin, J., Waters, B., Schiebel, D., Young, W., Golap, K.: Casa architecture and applications. In: Astronomical Data Analysis Software and Systems XVI, vol. 376, p. 127 (2007)

    Google Scholar 

  36. Meier, D.S., et al.: ALMA multi-line imaging of the nearby starburst NGC 253. Astrophys. J. 801, 63 (2015)

    Article  Google Scholar 

  37. Merényi, E., Taylor, J., Isella, A.: Mining complex hyperspectral alma cubes for structure with neural machine learning. In: IEEE Symposium Series on Computational Intelligence (2016)

    Google Scholar 

  38. Morozov, D., Weber, G.: Distributed merge trees. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 93–102 (2013)

    Google Scholar 

  39. Morozov, D., Weber, G.H.: Distributed contour trees. In: Topological Methods in Data Analysis and Visualization III: Theory. Algorithms, and Applications, pp. 89–102. Springer, Cham (2014)

    Google Scholar 

  40. Nguyen, D.D., et al.: Improved dynamical constraints on the mass of the central black hole in NGC 404. Astrophys. J. 836(2), 237 (2017)

    Article  Google Scholar 

  41. Oesterling, P., Heine, C., Weber, G., Morozov, D., Scheuermann, G.: Computing and visualizing time-varying merge trees for high-dimensional data. In: Carr, H., Garth, C., Weinkauf, T. (eds.) Topological Methods in Data Analysis and Visualization IV. Springer, Cham (2015)

    Google Scholar 

  42. Onishi, K., et al.: WISDOM project - I: black hole mass measurement using molecular gas kinematics in NGC 3665. Mon. Not. R. Astron. Soc. 468(4), 4663–4674 (2017)

    Article  Google Scholar 

  43. Ott, T.: QFitsView. http://www.mpe.mpg.de/~ott/QFitsView/

  44. Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: Multi-resolution computation and presentation of contour trees. Technical report, UCRL-PROC-208680, Lawrence Livermore National Laboratory (2005)

    Google Scholar 

  45. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58.1–58.9 (2007)

    Google Scholar 

  46. Peretto, N., et al.: Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astron. Astrophys. 555, A112 (2013)

    Article  Google Scholar 

  47. Raichel, B., Seshadhri, C.: A mountaintop view requires minimal sorting: a faster contour tree algorithm. ArXiv:1411.2689 (2014)

  48. Rathborne, J.M., et al.: Turbulence sets the initial conditions for star formation in high-pressure environments. Astrophys. J. Lett. 795, L25 (2014)

    Article  Google Scholar 

  49. Rathborne, J.M., et al.: A cluster in the making: ALMA reveals the initial conditions for high-mass cluster formation. Astrophys. J. 802, 125 (2015)

    Article  Google Scholar 

  50. Robitaille, T., Beaumont, C., McDonald, B., Rosolowsky, E.: Astrodendro, a Python package to compute dendrograms of astronomical data. http://www.dendrograms.org/

  51. Robitaille, T.P., et al.: Astropy: a community python package for astronomy. Astron. Astrophys. 558, A33 (2013)

    Article  Google Scholar 

  52. Rosen, P., Tu, J., Piegl, L.: A hybrid solution to calculating augmented join trees of 2D scalar fields in parallel. In: CAD Conference and Exhibition (2017)

    Google Scholar 

  53. Rosolowsky, E., Leroy, A.: Bias-free measurement of giant molecular cloud properties. Publ. Astron. Soc. Pac. 118(842), 590–610 (2006)

    Article  Google Scholar 

  54. Rosolowsky, E.W., Pineda, J.E., Kauffmann, J., Goodman, A.A.: Structural analysis of molecular clouds: dendrograms. Astrophys. J. 679(2), 1338–1351 (2008)

    Article  Google Scholar 

  55. Schneider, D., Wiebel, A., Carr, H., Hlawitschka, M., Scheuermann, G.: Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1475–1482 (2008)

    Article  Google Scholar 

  56. Sohn, B.S., Bajaj, C.: Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12(1), 14–25 (2006)

    Article  Google Scholar 

  57. Taylor, M., Boch, T., Taylor, J.: SAMP, the simple application messaging protocol: letting applications talk to each other. Astron. Comput. 11, 81–90 (2015)

    Article  Google Scholar 

  58. Wang, R., et al.: Star formation and gas kinematics of quasar host galaxies at z \(\sim \) 6: new insights from ALMA. Astrophys. J. 773, 44 (2013)

    Article  Google Scholar 

  59. Westerlund, S., Harris, C., Westmeier, T.: Assessing the accuracy of radio astronomy source finding algorithms. Publ. Astron. Soc. Aust. 29, 301–308 (2012)

    Article  Google Scholar 

  60. Williams, J.P., de Geus, E.J., Blitz, L.: Determining structure in molecular clouds. Astrophys. J. 428(2), 693–712 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a NRAO-NSF ALMA Development Grant titled Feature Extraction & Visualization of ALMA Data Cubes through Topological Data Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosen, P. et al. (2021). Using Contour Trees in the Analysis and Visualization of Radio Astronomy Data Cubes. In: Hotz, I., Bin Masood, T., Sadlo, F., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization VI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-83500-2_6

Download citation

Publish with us

Policies and ethics