Skip to main content

Introduction to Vector Field Topology

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization VI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Flow visualization is a research discipline that is concerned with the visual exploration and analysis of vector fields. An important class of methods are the topology-based techniques, which concentrate on individual structures in the domain that govern, constrain or guide the behavior of particles in the vector field. In this chapter, we give an overview of existing techniques for steady and unsteady vector fields in 2D and 3D. For time-dependent flows, we describe streamline-oriented and pathline-oriented approaches, eventually leading us to closely related feature-based visualization concepts such as reference frame invariance and Lagrangian coherent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R.H., Shaw, C.D.: Dynamics - The Geometry of Behaviour. The Visual Mathematics Library. Aerial Press Incorporated, Santa Cruz (1984)

    Google Scholar 

  2. Agranovsky, A., Garth, C., Joy, K.: Extracting flow structures using sparse particles. In: Proceedings of the Vision, Modeling and Visualization, pp. 151–160 (2011)

    Google Scholar 

  3. Andronov, A.A.: Qualitative Theory of Second-order Dynamic Systems, vol. 22054. Halsted Press, Canberra (1973)

    Google Scholar 

  4. Baeza Rojo, I., Gross, M., Günther, T.: Visualizing the phase space of heterogeneous inertial particles in 2D flows. Comput. Graph. Forum (Proc. EuroVis) 37(3), 289–300 (2018)

    Google Scholar 

  5. Baeza Rojo, I., Gross, M., Günther, T.: Accelerated Monte Carlo rendering of finite-time Lyapunov exponents. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Scientific Visualization 2019) (2020, to appear)

    Google Scholar 

  6. Baeza Rojo, I., Günther, T.: Vector field topology of time-dependent flows in a steady reference frame. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Scientific Visualization 2019) (2020, to appear)

    Google Scholar 

  7. Banks, D.C., Singer, B.A.: A predictor-corrector technique for visualizing unsteady flow. IEEE Trans. Visual Comput. Graphics 1, 151–163 (1995)

    Article  Google Scholar 

  8. Barakat, S.S., Garth, C., Tricoche, X.: Interactive computation and rendering of finite-time Lyapunov exponent fields. IEEE Trans. Visual Comput. Graphics 18(8), 1368–1380 (2012)

    Article  Google Scholar 

  9. Barakat, S.S., Tricoche, X.: Adaptive refinement of the flow map using sparse samples. IEEE TVCG (Proc. SciVis) 19(12), 2753–2762 (2013)

    Google Scholar 

  10. Bartolovic, N., Gross, M., Günther, T.: Phase space projection of dynamical systems. Comput. Graph. Forum (Proc. EuroVis) (2020)

    Google Scholar 

  11. Bhatia, H., et al.: Flow visualization with quantified spatial and temporal errors using edge maps. IEEE TVCG 18(9), 1383–1396 (2012)

    Google Scholar 

  12. Bhatia, H., Pascucci, V., Kirby, R.M., Bremer, P.T.: Extracting features from time-dependent vector fields using internal reference frames. Comput. Graph. Forum (Proc. EuroVis) 33(3), 21–30 (2014)

    Google Scholar 

  13. Bonneau, G.P., et al.: Overview and State-of-the-Art of Uncertainty Visualization, pp. 3–27. Springer, London (2014)

    Google Scholar 

  14. Born, S., Wiebel, A., Friedrich, J., Scheuermann, G., Bartz, D.: Illustrative stream surfaces. IEEE Trans. Visual Comput. Graphics 16(6), 1329–1338 (2010)

    Article  Google Scholar 

  15. Brunton, S.L., Rowley, C.W.: Fast computation of FTLE fields for unsteady flows: a comparison of methods. Chaos 20, 017503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bujack, R., Dutta, S., Baeza Rojo, I., Zhang, D., Günther, T.: Objective finite-time saddles and their connection to FTLE. In: Eurographics Conference on Visualization - Short Papers (2019)

    Google Scholar 

  17. Bujack, R., Hlawitschka, M., Joy, K.I.: Topology-inspired Galilean invariant vector field analysis. In: IEEE Pacific Visualization Symposium, pp. 72–79 (2016). https://doi.org/10.1109/PACIFICVIS.2016.7465253

  18. Bujack, R., Yan, L., Hotz, I., Garth, C., Wang, B.: State of the art in time-dependent flow topology: interpreting physical meaningfulness through mathematical properties. Comput. Graph. Forum (Proc. Eurovis) (2020). https://doi.org/10.1111/cgf.14037

  19. Chandler, J., Obermaier, H., Joy, K.I.: Interpolation-based pathline tracing in particle-based flow visualization. IEEE Trans. Visual Comput. Graphics 21(1), 68–80 (2015)

    Article  Google Scholar 

  20. Chen, G., Mischaikow, K., Laramee, R.S., Pilarczyk, P., Zhang, E.: Vector field editing and periodic orbit extraction using Morse decomposition. IEEE Trans. Visual Comput. Graphics 13(4), 769–785 (2007)

    Article  Google Scholar 

  21. Chen, G., Mischaikow, K., Laramee, R.S., Zhang, E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comput. Graph. 14(4), 848–862 (2008). https://doi.org/10.1109/TVCG.2008.33

  22. Conley, C.C.: Isolated Invariant Sets and the Morse Index, vol. 38. American Mathematical Society, Providence (1978)

    Google Scholar 

  23. Dallmann, U.: Topological structures of three-dimensional vortex flow separation. In: 16th Fluid and Plasmadynamics Conference, p. 1735 (1983)

    Google Scholar 

  24. Farazmand, M., Blazevski, D., Haller, G.: Shearless transport barriers in unsteady two-dimensional flows and maps. Physica D 278, 44–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferstl, F., Bürger, K., Westermann, R.: Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Scientific Visualization 2015) 22(1), 767–776 (2016)

    Google Scholar 

  26. Forman, R.: Combinatorial vector fields and dynamical systems. Math. Z. 228(4), 629–681 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Froyland, G., Padberg-Gehle, K.: Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In: Ergodic Theory, Open Dynamics, and Coherent Structures, pp. 171–216. Springer (2014)

    Google Scholar 

  28. Fuchs, R., et al.: Toward a Lagrangian vector field topology. Comput. Graph. Forum 29(3), 1163–1172 (2010). https://doi.org/10.1111/j.1467-8659.2009.01686.x

  29. Garaboa-Paz, D., Pérez-Muñuzuri, V.: A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows. Nonlin. Proc. Geophys. 22(5), 571–577 (2015)

    Article  Google Scholar 

  30. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Visualization) 13(6), 1464–1471 (2007)

    Google Scholar 

  31. Garth, C., Laramee, R.S., Tricoche, X., Schneider, J., Hagen, H.: Extraction and visualization of swirl and tumble motion from engine simulation data. In: Topology-Based Methods in Visualization. Visualization and Mathematics, pp. 121–135. Springer, Heidelberg (2007)

    Google Scholar 

  32. Garth, C., Tricoche, X.: Topology-and feature-based flow visualization: methods and applications. In: SIAM Conference on Geometric Design and Computing, pp. 25–46. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  33. Garth, C., Wiebel, A., Tricoche, X., Joy, K., Scheuermann, G.: Lagrangian visualization of flow-embedded surface structures. In: Computer Graphics Forum, vol. 27, pp. 1007–1014. Wiley Online Library (2008)

    Google Scholar 

  34. Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proceedings of the IEEE Visualization, pp. 33–40 (1991)

    Google Scholar 

  35. Günther, T.: Opacity optimization and inertial particles in flow visualization. Ph.D. thesis, University of Magdeburg (2016)

    Google Scholar 

  36. Günther, T., Gross, M.: Flow-induced inertial steady vector field topology. Comput. Graph. Forum (Proc. Eurographics) 36(2), 143–152 (2017)

    Google Scholar 

  37. Günther, T., Gross, M., Theisel, H.: Generic objective vortices for flow visualization. ACM Trans. Graph. (Proc. SIGGRAPH) 36(4), 141:1–141:11 (2017)

    Google Scholar 

  38. Günther, T., Kuhn, A., Theisel, H.: MCFTLE: Monte Carlo rendering of finite-time Lyapunov exponent fields. Comput. Graph. Forum (Proc. EuroVis) 35(3), 381–390 (2016)

    Google Scholar 

  39. Günther, T., Theisel, H.: Vortex cores of inertial particles. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE SciVis) 20(12), 2535–2544 (2014)

    Google Scholar 

  40. Günther, T., Theisel, H.: Inertial steady 2D vector field topology. Comput. Graph. Forum (Proc. Eurographics) 35(2), 455–466 (2016)

    Google Scholar 

  41. Günther, T., Theisel, H.: Hyper-objective vortices. IEEE Trans. Vis. Comput. Graph. 26, 1532–1547 (2018)

    Article  Google Scholar 

  42. Günther, T., Theisel, H.: The state of the art in vortex extraction. Comput. Graph. Forum 37(6), 149–173 (2018)

    Article  Google Scholar 

  43. Günther, T., Theisel, H.: Objective vortex corelines of finite-sized objects in fluid flows. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE SciVis) 25(1) (2019). https://doi.org/10.1109/TVCG.2018.2864828

  44. Guo, H., He, W., Peterka, T., Shen, H.W., Collis, S.M., Helmus, J.J.: Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows. IEEE Trans. Visual Comput. Graphics 22(6), 1672–1682 (2016)

    Article  Google Scholar 

  45. Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., Haller, G.: A critical comparison of Lagrangian methods for coherent structure detection. Chaos Interdisc. J. Nonlinear Sci. 27(5), 053104 (2017)

    Google Scholar 

  46. Hadwiger, M., Mlejnek, M., Theußl, T., Rautek, P.: Time-dependent flow seen through approximate observer killing fields. IEEE Trans. Visual Comput. Graphics 25(1), 1257–1266 (2019). https://doi.org/10.1109/TVCG.2018.2864839

    Article  Google Scholar 

  47. Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos Interdisc. J. Nonlinear Sci. 10(1), 99–108 (2000)

    Google Scholar 

  48. Haller, G.: An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Haller, G.: Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137–162 (2015)

    Article  MathSciNet  Google Scholar 

  50. Haller, G., Hadjighasem, A., Farazmand, M., Huhn, F.: Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Haller, G., Sapsis, T.: Where do inertial particles go in fluid flows? Physica D 237, 573–583 (2008). https://doi.org/10.1016/j.physd.2007.09.027

    Article  MathSciNet  MATH  Google Scholar 

  52. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147(3–4), 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Heine, C., et al.: A survey of topology-based methods in visualization. Comput. Graph. Forum 35(3), 643–667 (2016). https://doi.org/10.1111/cgf.12933

  54. Heinze, R., Raasch, S., Etling, D.: The structure of kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteorol. Z. 21(3), 221–237 (2012)

    Article  Google Scholar 

  55. Helman, J.L., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. Computer 22(8), 27–36 (1989)

    Article  Google Scholar 

  56. Helman, J.L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graphics Appl. 11, 36–46 (1991)

    Article  Google Scholar 

  57. Hofmann, L., Rieck, B., Sadlo, F.: Visualization of 4D vector field topology. Comput. Graph. Forum 37(3), 301–313 (2018)

    Article  Google Scholar 

  58. Hofmann, L., Sadlo, F.: The dependent vectors operator. Comput. Graph. Forum 38(3), 261–272 (2019)

    Article  Google Scholar 

  59. Hofmann, L., Sadlo, F.: Extraction of distinguished hyperbolic trajectories for 2D time-dependent vector field topology. Comput. Graph. Forum (Proc. Eurovis) (2020). https://doi.org/10.1111/cgf.13982

  60. Hummel, M., Obermaier, H., Garth, C., Joy, K.I.: Comparative visual analysis of Lagrangian transport in CFD ensembles. IEEE Trans. Visual Comput. Graphics 19(12), 2743–2752 (2013)

    Article  Google Scholar 

  61. Ide, K., Small, D., Wiggins, S.: Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets (2002)

    Google Scholar 

  62. Kasten, J., Petz, C., Hotz, I., Noack, B., Hege., H.C.: Localized finite-time Lyapunov exponent for unsteady flow analysis. In: Proceedings of Vision, Modeling and Visualization, pp. 265–274 (2009)

    Google Scholar 

  63. Kasten, J., Reininghaus, J., Reich, W., Scheuermann, G.: Toward the extraction of saddle periodic orbits. In: Topological Methods in Data Analysis and Visualization III, pp. 55–69. Springer (2014)

    Google Scholar 

  64. Katsanoulis, S., Farazmand, M., Serra, M., Haller, G.: Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows. arXiv preprint arXiv:1910.07355 (2019)

  65. Kenwright, D., Haimes, R.: Vortex identification-applications in aerodynamics: a case study. In: Proceedings. Visualization 1997 (Cat. No. 97CB36155), pp. 413–416. IEEE (1997)

    Google Scholar 

  66. Kern, M., Hewson, T., Sadlo, F., Westermann, R., Rautenhaus, M.: Robust detection and visualization of jet-stream core lines in atmospheric flow. IEEE Trans. Visual Comput. Graphics 24(1), 893–902 (2017)

    Article  Google Scholar 

  67. Kim, B., Günther, T.: Robust reference frame extraction from unsteady 2D vector fields with convolutional neural networks. Comput. Graph. Forum (Proc. EuroVis) 38(3), 285–295 (2019)

    Google Scholar 

  68. Koch, S., Kasten, J., Wiebel, A., Scheuermann, G., Hlawitschka, M.: 2d vector field approximation using linear neighborhoods. Vis. Comput. 32(12), 1563–1578 (2016)

    Article  Google Scholar 

  69. Kuhn, A., Engelke, W., Rössl, C., Hadwiger, M., Theisel, H.: Time line cell tracking for the approximation of Lagrangian coherent structures with subgrid accuracy. Comput. Graph. Forum 33(1), 222–234 (2014)

    Article  Google Scholar 

  70. Kuhn, A., Rössl, C., Weinkauf, T., Theisel, H.: A benchmark for evaluating FTLE computations. In: Proceedings of 5th IEEE Pacific Visualization Symposium (PacificVis 2012), pp. 121–128, Songdo, Korea (2012)

    Google Scholar 

  71. Lapidus, L., Seinfeld, J.H.: Numerical Solution of Ordinary Differential Equations. Academic Press, New York (1971)

    Google Scholar 

  72. Laramee, R., Hauser, H., Zhao, L., Post, F.: Topology-based flow visualization, the state of the art. In: Topology-based Methods in Visualization. Mathematics and Visualization, pp. 1–19. Springer, Heidelberg (2007)

    Google Scholar 

  73. de Leeuw, W., van Liere, R.: Collapsing flow topology using area metrics. In: Proceedings of the Conference on Visualization, VIS 1999, pp. 349–354 (1999)

    Google Scholar 

  74. Leo, L.S., Thompson, M.Y., Di Sabatino, S., Fernando, H.J.: Stratified flow past a hill: dividing streamline concept revisited. Bound. Layer Meteorol. 159(3), 611–634 (2016)

    Article  Google Scholar 

  75. Lodha, S., Renteria, J., Roskin, K.: Topology preserving compression of 2D vector fields. In: Proceedings of the IEEE Visualization, pp. 343–350 (2000)

    Google Scholar 

  76. Löffelmann, H., Doleisch, H., Gröller, E.: Visualizing dynamical systems near critical points. In: Spring Conference on Computer Graphics and its Applications, pp. 175–184 (1998)

    Google Scholar 

  77. Lugt, H.J.: The dilemma of defining a vortex. In: Recent Developments in Theoretical and Experimental Fluid Mechanics, pp. 309–321. Springer (1979)

    Google Scholar 

  78. Machado, G.M., Boblest, S., Ertl, T., Sadlo, F.: Space-time bifurcation lines for extraction of 2D Lagrangian coherent structures. Comput. Graph. Forum (Proc. EuroVis) 35(3), 91–100 (2016)

    Google Scholar 

  79. Mograbi, E., Bar-Ziv, E.: On the asymptotic solution of the Maxey-Riley equation. Phys. Fluids 18(5), 051704 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  80. Nsonga, B., Niemann, M., Fröhlich, J., Staib, J., Gumhold, S., Scheuermann, G.: Detection and visualization of splat and antisplat events in turbulent flows. IEEE Trans. Vis. Comput. Graph. 26, 3147–3162 (2019)

    Article  Google Scholar 

  81. Obermaier, H., Joy, K.I.: Future challenges for ensemble visualization. IEEE Comput. Graphics Appl. 34(3), 8–11 (2014)

    Article  Google Scholar 

  82. Onu, K., Huhn, F., Haller, G.: LCS tool: a computational platform for Lagrangian coherent structures. J. Comput. Sci. 7, 26–36 (2015)

    Article  Google Scholar 

  83. Otto, M., Theisel, H.: Vortex analysis in uncertain vector fields. Comput. Graph. Forum (Proc. EuroVis) 31(3), 1035–1044 (2012). https://doi.org/10.1111/j.1467-8659.2012.03096.x

  84. Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13(8), 370–390 (1997)

    Article  Google Scholar 

  85. Peikert, R., Roth, M.: The “parallel vectors” operator - a vector field visualization primitive. In: Proceedings of the IEEE Visualization, pp. 263–270 (1999)

    Google Scholar 

  86. Peng, J., Dabiri, J.O.: Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. J. Fluid Mech. 623, 75–84 (2009). https://doi.org/10.1017/S0022112008005089

    Article  MATH  Google Scholar 

  87. Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19(1), 125–155 (1987)

    Article  Google Scholar 

  88. Petz, C., Pöthkow, K., Hege, H.C.: Probabilistic local features in uncertain vector fields with spatial correlation. In: Computer Graphics Forum, vol. 31, pp. 1045–1054. Wiley Online Library (2012)

    Google Scholar 

  89. Pfaffelmoser, T., Reitinger, M., Westermann, R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. In: Computer Graphics Forum, vol. 30, pp. 951–960. Wiley Online Library (2011)

    Google Scholar 

  90. Pobitzer, A., et al.: The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum 30(6), 1789–1811 (2011)

    Article  Google Scholar 

  91. Pöthkow, K., Weber, B., Hege, H.C.: Probabilistic marching cubes. In: Computer Graphics Forum, vol. 30, pp. 931–940. Wiley Online Library (2011)

    Google Scholar 

  92. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, vol. 2. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  93. Reich, W., Schneider, D., Heine, C., Wiebel, A., Chen, G., Scheuermann, G.: Combinatorial vector field topology in three dimensions. In: Topological Methods in Data Analysis and Visualization II, pp. 47–59. Springer (2012)

    Google Scholar 

  94. Reininghaus, J., Lowen, C., Hotz, I.: Fast combinatorial vector field topology. IEEE Trans. Visual Comput. Graphics 17(10), 1433–1443 (2011). https://doi.org/10.1109/TVCG.2010.235

    Article  Google Scholar 

  95. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23(1), 601–639 (1991)

    Article  Google Scholar 

  96. Roth, M.: Automatic extraction of vortex core lines and other line type features for scientific visualization, vol. 2. Ph.D. dissertation number 13673, ETH Zurich (2000)

    Google Scholar 

  97. Roth, M., Peikert, R.: A higher-order method for finding vortex core lines. In: Proceedings of the IEEE Visualization, pp. 143–150 (1998)

    Google Scholar 

  98. Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. (IEEE Visualization) 13(6), 1456–1463 (2007)

    Google Scholar 

  99. Sadlo, F., Weiskopf, D.: Time-dependent 2-D vector field topology: an approach inspired by Lagrangian coherent structures. Comput. Graph. Forum 29(1), 88–100 (2010). https://doi.org/10.1111/j.1467-8659.2009.01546.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01546.x

  100. Sagristà, A., Jordan, S., Just, A., Dias, F., Nonato, L.G., Sadlo, F.: Topological analysis of inertial dynamics. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE SciVis 2016) 23(1), 950–959 (2017)

    Google Scholar 

  101. Sahner, J.: Extraction of vortex structures in 3D flow fields. Ph.D. thesis, University of Magdeburg, Germany (2009)

    Google Scholar 

  102. Sahner, J., Weinkauf, T., Hege, H.C.: Galilean invariant extraction and iconic representation of vortex core lines. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), pp. 151–160 (2005)

    Google Scholar 

  103. Sahner, J., Weinkauf, T., Teuber, N., Hege, H.C.: Vortex and strain skeletons in Eulerian and Lagrangian frames. IEEE Trans. Visual Comput. Graphics 13(5), 980–990 (2007)

    Article  Google Scholar 

  104. Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Visual Comput. Graphics 16(6), 1421–1430 (2010)

    Article  Google Scholar 

  105. Scheuermann, G., Hagen, H.: A data dependent triangulation for vector fields. In: Proceedings of Computer Graphics International 1998, pp. 96–102. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  106. Scheuermann, G., Hamann, B., Joy, K., Kollmann, W.: Visualizing local vector field topology. J. Electr. Images 9, 356–367 (2000)

    Article  Google Scholar 

  107. Scheuermann, G., Kruger, H., Menzel, M., Rockwood, A.: Visualizing nonlinear vector field topology. IEEE Trans. Visual Comput. Graphics 4(2), 109–116 (1998)

    Article  Google Scholar 

  108. Scheuermann, G., Tricoche, X.: Topological methods for flow. The Visualization Handbook, p. 341 (2005)

    Google Scholar 

  109. Schneider, D., Reich, W., Wiebel, A., Scheuermann, G.: Topology aware stream surfaces. Comput. Graph. Forum (Proc. EuroVis) 29(3), 1153–1161 (2010)

    Google Scholar 

  110. Serra, M., Haller, G.: Objective Eulerian coherent structures. Chaos Interdisc. J. Nonlinear Sci. 26(5), 053110 (2016)

    Google Scholar 

  111. Shabana, A.A.: Computational Continuum Mechanics. Wiley, Hoboken (2018)

    Google Scholar 

  112. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212(3–4), 271–304 (2005). https://doi.org/10.1016/j.physd.2005.10.007

    Article  MathSciNet  MATH  Google Scholar 

  113. Shi, L., Zhang, L., Cao, W., Chen, G.: Analysis enhanced particle-based flow visualization. Electr. Imag. 2017(1), 12–21 (2017)

    Article  Google Scholar 

  114. Sudharsan, M., Brunton, S.L., Riley, J.J.: Lagrangian coherent structures and inertial particle dynamics. ArXiv e-prints (2015). Arxiv:1512.05733

  115. Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT (1995). AIAA Paper 95–1715

    Google Scholar 

  116. Sydney, A., Baharani, A., Leishman, J.G.: Understanding brownout using near-wall dual-phase flow measurements. In: Proceedings of the American Helicopter Society, 67th Annual Forum. Virginia Beach (2011)

    Google Scholar 

  117. Theisel, H.: Designing 2D vector fields of arbitrary topology. Comput. Graph. Forum (Proc. Eurographics) 21(3), 595–604 (2002)

    Google Scholar 

  118. Theisel, H., Rössl, C., Seidel, H.P.: Compression of 2D vector fields under guaranteed topology preservation. Comput. Graph. Forum (Proc. Eurographics) 22(3), 333–342 (2003)

    Google Scholar 

  119. Theisel, H., Seidel, H.P.: Feature flow fields. In: Proceedings of the Symposium on Data Visualisation, pp. 141–148 (2003)

    Google Scholar 

  120. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of the IEEE Visualization, pp. 225–232 (2003)

    Google Scholar 

  121. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Grid-independent detection of closed stream lines in 2D vector fields. In: Vision, Modeling and Visualization, vol. 4, pp. 421–428 (2004)

    Google Scholar 

  122. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Stream line and path line oriented topology for 2d time-dependent vector fields. In: Proceedings of the Conference on Visualization 2004, pp. 321–328. IEEE Computer Society (2004)

    Google Scholar 

  123. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology toolkit. IEEE Trans. Visual Comput. Graphics 24(1), 832–842 (2017)

    Article  Google Scholar 

  124. Tricoche, X., Scheuermann, G., Hagen, H.: A topology simplification method for 2D vector fields. In: Proceedings of the Visualization, pp. 359–366 (2000). https://doi.org/10.1109/VISUAL.2000.885716

  125. Tricoche, X., Scheuermann, G., Hagen, H.: Continuous topology simplification of planar vector fields. In: Proceedings of the Conference on Visualization 2001, pp. 159–166. IEEE Computer Society (2001)

    Google Scholar 

  126. Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topology tracking for the visualization of time-dependent two-dimensional flows. Comput. Graph. 26(2), 249–257 (2002)

    Article  Google Scholar 

  127. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flugge, S., (ed.) Handbuch der Physik, Band III/3. Springer, Berlin (1965)

    Google Scholar 

  128. Truesdell, C., Rajagopal, K.R.: An Introduction to the Mechanics of Fluids. Springer, Boston (2010)

    Google Scholar 

  129. Üffinger, M., Sadlo, F., Ertl, T.: A time-dependent vector field topology based on streak surfaces. IEEE TVCG 19(3), 379–392 (2013)

    Google Scholar 

  130. Wang, W., Wang, W., Li, S.: From numerics to combinatorics: a survey of topological methods for vector field visualization. J. Vis. 19(4), 727–752 (2016)

    Article  Google Scholar 

  131. Weinkauf, T.: Extraction of topological structures in 2D and 3D vector fields. Ph.D. thesis, University Magdeburg (2008)

    Google Scholar 

  132. Weinkauf, T., Hege, H.C., Theisel, H.: Advected tangent curves: a general scheme for characteristic curves of flow fields. Comput. Graph. Forum (Proc. Eurographics) 31(2), 825–834 (2012)

    Google Scholar 

  133. Weinkauf, T., Sahner, J., Theisel, H., Hege, H.C.: Cores of swirling particle motion in unsteady flows. IEEE Trans. Vis. Comput. Graph. (Proc. Visualization) 13(6), 1759–1766 (2007)

    Google Scholar 

  134. Weinkauf, T., Theisel, H.: Streak lines as tangent curves of a derived vector field. IEEE TVCG (Proc. Visualization) 16(6), 1225–1234 (2010)

    Google Scholar 

  135. Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Boundary switch connectors for topological visualization of complex 3D vector fields. In: VisSym, pp. 183–192 (2004)

    Google Scholar 

  136. Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Proc. Eurographics) 23(3), 469–478 (2004)

    Google Scholar 

  137. Westermann, R., Johnson, C., Ertl, T.: Topology-preserving smoothing of vector fields. IEEE Trans. Visual Comput. Graphics 7(3), 222–229 (2001)

    Article  Google Scholar 

  138. Wiebel, A., Chan, R., Wolf, C., Robitzki, A., Stevens, A., Scheuermann, G.: Topological flow structures in a mathematical model for rotation-mediated cell aggregation. In: Topological Data Analysis and Visualization: Theory, Algorithms and Applications, pp. 1–12 (2009)

    Google Scholar 

  139. Wiebel, A., Tricoche, X., Scheuermann, G.: Extraction of separation manifolds using topological structures in flow cross sections. In: Topology-Based Methods in Visualization II, pp. 31–43. Springer (2009)

    Google Scholar 

  140. Wiebel, A., Tricoche, X., Schneider, D., Janicke, H., Scheuermann, G.: Generalized streak lines: analysis and visualization of boundary induced vortices. IEEE Trans. Vis. Comput. Graph. 13(6), 1735–1742 (2007). https://doi.org/10.1109/TVCG.2007.70557

  141. Wilde, T., Rössi, C., Theisel, H.: Recirculation surfaces for flow visualization. IEEE Trans. Vis. Comput. Graph. (Proc. IEEE Scientific Visualization) 25(1), 946–955 (2019). https://doi.org/10.1109/TVCG.2018.2864813

  142. Wischgoll, T., Scheuermann, G.: Detection and visualization of closed streamlines in planar flows. IEEE Trans. Visual Comput. Graphics 7(2), 165–172 (2001)

    Article  Google Scholar 

  143. Wischgoll, T., Scheuermann, G.: Locating closed streamlines in 3D vector fields. Methods 16, 19 (2002)

    Google Scholar 

  144. Zehner, B., Watanabe, N., Kolditz, O.: Visualization of gridded scalar data with uncertainty in geosciences. Comput. Geosci. 36(10), 1268–1275 (2010)

    Article  Google Scholar 

  145. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) Ambizione grant no. PZ00P2_180114 and by ETH Research Grant ETH-07 18-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Günther, T., Baeza Rojo, I. (2021). Introduction to Vector Field Topology. In: Hotz, I., Bin Masood, T., Sadlo, F., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization VI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-83500-2_15

Download citation

Publish with us

Policies and ethics