Skip to main content

Metabolomics Application in Fetal Medicine

  • Chapter
  • First Online:
Perinatology
  • 1490 Accesses

Abstract

Metabolomics has begun to revolutionize many fields of biomedicine. Indeed, various disease states can be reflected by changes in metabolite concentrations. Metabolomics allows the simultaneous measurement of a large number of biomolecules on a single biological sample. Metabolomics strategies have been increasingly exploited to understand the metabolic adaptations of the human organism in pregnancy and to characterize deviant behavior caused by prenatal complications. Several types of biomaterial can be collected and investigated. All of them enable the determination of the maternal and fetal state, but their biochemical interactions pose a number of challenges for the obstetric scientific world. The aim of our study was to collect evidences in metabolomics research and prenatal medicine, considering several pathological or physiological aspects of pregnancy. The development of new approaches to find reliable biomarkers is crucial to introduce new knowledge and panels for the diagnosis and classification of different diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang A, Sun H, Wang P, et al. Modern analytic techniques in metabolomics analysis. Analyst. 2012;137:293–300.

    CAS  Google Scholar 

  2. Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta. 2010;659:23–33.

    CAS  Google Scholar 

  3. Nicholson JK, Lindon JC. Nature. 2008;455:1054.

    Google Scholar 

  4. Haney RP, Skillman TG. Calcium metabolism in normal human pregnancy. J Clin Endocrinol Metabol. 1971;33:661–70.

    Google Scholar 

  5. Sheldon J, Bleicher MD, John B, et al. Carbohydrate metabolism in pregnancy — the interrelations of glucose, insulin and free fatty acids in late pregnancy and post partum. N Engl J Med. 1964;271:866–72.

    Google Scholar 

  6. Knopp RH, Warth MR, Charles D, et al. Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biol Neonate. 1986;50:297–317.

    CAS  Google Scholar 

  7. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    CAS  Google Scholar 

  8. Dettmer K, Hammock BD. Metabolomics—a new exciting field within the “omics” sciences. Environ Health Perspect. 2004;112:A396–7.

    Google Scholar 

  9. Moco S, Bino RJ, De Vos RCH, et al. Metabolomics technologies and metabolite identification. Trends Anal Chem. 2007;26(9):855–66.

    CAS  Google Scholar 

  10. Oresic M, Clish CB, Davidov EJ, et al. Phenotype characterisa-tion using integrated gene transcript, protein and meta-bolite profiling. Appl Bioinformatics. 2004;3:205–17.

    CAS  Google Scholar 

  11. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference and prediction. Berlin: Springer-Verlag; 2001. p. 50.

    Google Scholar 

  12. Manly BFJ. Multivariate statistical methods: a primer. London: Chapman & Hall; 1994. p. 215.

    Google Scholar 

  13. Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6:4716–23.

    CAS  Google Scholar 

  14. Luan H, Meng N, Liu P, et al. Pregnancyinduced metabolic phenotype variations in maternal plasma. J Proteome Res. 2014;13:1527–36.

    CAS  Google Scholar 

  15. Iuculano A, Murgia F, Peddes C, et al. Metabolic characterization of amniotic fluids of fetuses with enlarged nuchal translucency. J Perinat Med. 2019;47:311–8.

    CAS  Google Scholar 

  16. Diaz SO, Pinto J, Graça G, et al. Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res. 2011;10:3732–42.

    CAS  Google Scholar 

  17. Tea I, Le Gall G, Küster A, et al. 1H-NMRbased metabolic profiling of maternal and umbilical cord blood indicates altered materno foetal nutrient exchange in preterm infants. PLoS One. 2012;7:e29947.

    Google Scholar 

  18. Horgan RP, Broadhurst DI, Dunn WB, et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta. 2010;31:893–901.

    CAS  Google Scholar 

  19. Kenny LC, Broadhurst DI, Dunn W, et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010;56:741–9.

    CAS  Google Scholar 

  20. Dunn WB, Brown M, Worton SA, et al. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy. Metabolomics. 2011;8:579–97.

    Google Scholar 

  21. Bahado-Singh RO, Akolekar R, Mandal R, et al. First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013;208:58.e1–7.

    CAS  Google Scholar 

  22. Burton GJ, Watson AL, Hempstock J, et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–9.

    CAS  Google Scholar 

  23. Jauniaux E, Watson AL, Hempstock J, et al. Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22.

    CAS  Google Scholar 

  24. Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11:342–52.

    CAS  Google Scholar 

  25. Lain KY, et al. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50:938–48.

    Google Scholar 

  26. Herrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol. 2014;15(1):24–31.

    CAS  Google Scholar 

  27. Zeng Z, Liu F, Li S. Metabolic adaptations in pregnancy: a review. Ann Nutr Metab. 2017;70:59–65.

    CAS  Google Scholar 

  28. Jauniaux E, Hempstock J, Teng C, et al. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90:1171–5.

    CAS  Google Scholar 

  29. Murgia F, Iuculano A, Peddes C, et al. Metabolic fingerprinting of chorionic villous samples in normal pregnancy and chromosomal disorders. Prenat Diagn. 2019;39:848–58.

    CAS  Google Scholar 

  30. Catalano P, Roman-Drago N, Amini S, et al. Longitudinal changes in body composition and energy balance in lean women with normal and abnormal glucose tolerance during pregnancy. Am J Obstet Gynecol. 1998;179:156–65.

    CAS  Google Scholar 

  31. Di Cianni G, Ghio A, Resi V, et al. Gestational diabetes mellitus: an opportunity to prevent type 2 diabetes and cardiovascular disease in young women. Womens Health. 2010;6:97–105.

    Google Scholar 

  32. McLachlan K, O’Neal D, Jenkins A, Alford F. Do adiponectin, TNFα, leptin and CRP relate to IR in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes Metab Res Rev. 2006;22:131–8.

    CAS  Google Scholar 

  33. Ryan EA, Enns L. Role of gestational hormones in the induction of IR. J Clin Endocrinol Metab. 1988;67:341–7.

    CAS  Google Scholar 

  34. Suzuki S, Kawasaki H, Satoh Y. Urinary chiro-inositol excretion is an index marker of insulin sensitivity in Japanese type II diabetes. Diabetes Care. 1994;17:1465–8.

    CAS  Google Scholar 

  35. Larner J, Brautigan DL, Thorner MO. d-Chiro-inositol glycans in insulin signaling and insulin resistance. Mol Med. 2010;16:543–51.

    CAS  Google Scholar 

  36. Corrado F, D’Anna R, Di Vieste G, et al. The effect of myoinositol supplementation on insulin resistance in patients with gestational diabetes. Diabet Med. 2011;28(8):972–5.

    CAS  Google Scholar 

  37. National Collaborating Centre for Women’s and Children’s Health. Antenatal care: routine care for the healthy pregnant woman. Clinical guideline. Commissioned by the National Institute for Clinical Excellence. London: Royal College of Obstetrics and Gynaecology Press; 2008. p. 218–27.

    Google Scholar 

  38. Troisi J, Sarno L, Martinelli P, et al. A metabolomics-based approach for non-invasive diagnosis of chromosomal anomalies; 2017.

    Google Scholar 

  39. Bahado-Singh O, Akolekar R, Mandal R, et al. Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol study with the cology. 2013;208:371.e1–371.e8.

    Google Scholar 

  40. Bahado-Singh RO, Akolekar R, Chelliah A, et al. Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013;209:65.e1–9.

    CAS  Google Scholar 

  41. Troisi J, Sarno L, Martinelli P, Di Carlo C, Landolfi A, Scala G, Rinaldi M, D’Alessandro P, Ciccone C, Guida M. A metabolomics-based approach for non-invasive diagnosis of chromosomal anomalies. Metabolomics. 2017;13:140.

    Google Scholar 

  42. Conde-Agudelo A, Romero R, Da Fonseca E, et al. Vaginal progesterone is as effective as cervical cerclage to prevent preterm birth in women with a singleton gestation, previous spontaneous preterm birth, and a short cervix: updated indirect comparison meta-analysis. Am J Obstet Gynecol. 2018;219:10–25.

    CAS  Google Scholar 

  43. Auray-Blais C, Raiche E, Gagnon R, et al. Metabolomics and preterm birth: what biomarkers in cervicovaginal secretions are predictive of high-risk pregnant women? Int J Mass Spectrom. 2011;307:33–8.

    CAS  Google Scholar 

  44. Baraldi E, Giordano G, Stocchero M, et al. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS One. 2016;11(10):e0164211.

    Google Scholar 

  45. Gervasi MT, Romero R, Bracalente G, et al. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med. 2012;40(4):329–43.

    CAS  Google Scholar 

  46. Virgiliou C, Gika HG, Witting M, et al. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. J Proteome Res. 2017;16(2):898–910.

    CAS  Google Scholar 

  47. Romero R, Mazaki-Tovi S, Vaisbuch E, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010;23(12):1344–59.

    CAS  Google Scholar 

  48. Menon R, Jones J, Gunst PR, et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 2014;21(6):791–803.

    Google Scholar 

  49. Graca G, Duarte IF, Barros AS, et al. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. J Proteome Res. 2010;9(11):6016–24.

    CAS  Google Scholar 

  50. Graca G, Goodfellow BJ, Barros AS, et al. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Mol Biosyst. 2012;8(4):1243–54.

    CAS  Google Scholar 

  51. Lizewska B, Teul J, Kuc P, et al. Maternal plasma metabolomic profiles in spontaneous preterm birth: preliminary results. Mediators Inflamm. 2018;2018:9362820.

    Google Scholar 

  52. Tea I, Le Gall G, Küster A, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012;7(1):e29947.

    CAS  Google Scholar 

  53. Auray-Blais C, Raiche E, Gagnon R, et al. Metabolomics and preterm birth: what biomarkers in cervicovaginal secretions are predictive of high-risk accepted manuscript pregnant women? Int J Mass Spectrom. 2011;307(1–3):33–8.

    CAS  Google Scholar 

  54. Amabebe E, Reynolds S, Stern VL, et al. Identifying metabolite markers for preterm birth in cervicovaginal fluid by magnetic resonance spectroscopy. Metabolomics. 2016;12:67.

    Google Scholar 

  55. Brown MA, Lindheimer MD, de Swiet M, et al. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV.

    CAS  Google Scholar 

  56. Knight M, Kenyon S, Brocklehurst P, Neilson J, Shakespeare J, Kurinczuk JJ, editors. on behalf of MBRRACEUK. Saving lives, improving mothers’ care - lessons learned to inform future maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2009–12. Oxford: National Perinatal Epidemiology Unit, University of Oxford; 2014.

    Google Scholar 

  57. Donati S, Senatore S, Ronaconi A, the Regional Maternal Mortality Working Group. Maternal mortality in Italy: a record linkage study. BJOG. 2011;118:872–9.

    CAS  Google Scholar 

  58. Duley L, Henderson-Smart D, et al. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007:CD004659.

    Google Scholar 

  59. Rolnik DL, Wright D, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    CAS  Google Scholar 

  60. O’Gorman N, Wright D, Syngelaki A, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am J Obstet Gynecol. 2016;214:103.e1–12.

    Google Scholar 

  61. Austdal M, Skråstad RB, Gundersen AS, et al. Metabolomic biomarkers in serum and urine in women with preeclampsia. PLoS One. 2014;9:e91923.

    Google Scholar 

  62. Thiele IG, Niezen-Koning KE, van Gennip AH, et al. Increased plasma carnitine concentrations in preeclampsia. Obstet Gynecol. 2004;103:876–80.

    CAS  Google Scholar 

  63. Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia. Exp Cell Res. 2017;359:195–204.

    CAS  Google Scholar 

  64. Desforges M, Ditchfield A, Hirst CR, et al. Reduced placental taurine transporter (TauT) activity in pregnancies complicated by pre-eclampsia and maternal obesity. Taurine. 2013;8:81–91.

    Google Scholar 

  65. Bahado-Singh RO, Syngelaki A, Akolekar R, et al. Validation of metabolomic models for prediction of early-onset preeclampsia. Am J Obstet Gynecol. 2015;213:530.e531–530. E510.

    Google Scholar 

  66. Austdal M, Tangerås LH, Skråstad RB, et al. First trimester urine and serum metabolomics for prediction of preeclampsia and gestational hypertension: a prospective screening study. Int J Mol Sci. 2015;16:21520–38.

    CAS  Google Scholar 

  67. Bolin M, Åkerud P, Hansson A, et al. Histidinerich glycoprotein as an early biomarker of preeclampsia. Am J Hypertens. 2011;24:496–501.

    Google Scholar 

  68. Mukherjee R, Ray CD, Ray S, et al. Altered metabolic profile in early and late onset preeclampsia: an FTIR spectroscopic study. Pregnancy Hypertens. 2014;4:70–80.

    Google Scholar 

  69. Fatemeh B, Nobakht M. Gh application of metabolomics to preeclampsia diagnosis. Syst Biol Reprod Med. 2018;64:324–39.

    Google Scholar 

  70. Mitchell SC, Korones SB, Berendes HW. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation. 1971;43:323–32.

    CAS  Google Scholar 

  71. Hoffman JJ, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Google Scholar 

  72. Bahado-Singh RO, Ertl R, Mandal R, et al. Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014;211:240.e1–14.

    CAS  Google Scholar 

  73. Monni G, Murgia F, Corda V, et al. Metabolomic investigation of β-thalassemia in chorionic villi samples. J Clin Med. 2019;8:798.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monni, G., Murgia, F., Corda, V., Iuculano, A., Atzori, L. (2022). Metabolomics Application in Fetal Medicine. In: Moreira de Sá, R.A., Fonseca, E.B.d. (eds) Perinatology. Springer, Cham. https://doi.org/10.1007/978-3-030-83434-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83434-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83433-3

  • Online ISBN: 978-3-030-83434-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics