Skip to main content

Clinical Use of 3D Sonography

  • Chapter
  • First Online:
Perinatology

Abstract

Ultrasound technology empowered with the three-dimensional and four-dimensional ultrasound (3D/4D US) imaging nowadays makes the essential and complementary part of diagnostic approach in clinical practice. The 3D/4D US revealed many clinical diagnostic possibilities in prenatal medicine. It improves the physicians’ ability and precision in diclosure and diagnosis of fetal structural as well as functional impairments. We all strive to find the solution and prevent different disorders like the cerebral palsy (CP), autism spectrum disorders (ASD), and other neurological impairments. Assessment of fetal functional neurology with the 4D US and application of KANET seem to be helpful and make one of the steps toward the realization of this important aim. Special attention should be paid to doctors education to benefit the most of it in difficult process of prenatal diagnosis and clinical decision-making. Global and multidisciplinary collaboration is essential to gain correct data and to improve both prenatal assessment and postnatal monitoring for the purpose of reaching reasonable conclusions and maximal results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurjak A, Spalldi BL. Controversies on the beginning of human life. In: Kurajak A, Chervenak FA, editors. Donald school embryo as a person and as a patient. New Delhi: Jaypee Brothers Medical Publishers; 2019. p. 28–51.

    Google Scholar 

  2. Barišić LS, Kurjak A, Pooh RK. Three-dimensional sonography in fetal syndromes. In: Merz E, Kurjak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 300–20.

    Google Scholar 

  3. Baba K, Okai T, Satoh K. Development of scan head position indicator for ultrasonic fetal three-dimensional reconstruction. JPN J Med Ultrasonics. 1986;13(Suppl. 1):121–2.

    Google Scholar 

  4. Baba K, Satoh K, Sakamoto S, et al. Development of an ultrasonic system for three-dimensional reconstruction of the fetus. J Perinat Med. 1989;17:19–24.

    CAS  Google Scholar 

  5. Kuo HC, Chang FM, Wu CH, et al. The primary application of three-dimensional ultrasonography in obstetrics. Am J Obstet Gynecol. 1992;166:880–6.

    CAS  Google Scholar 

  6. Merz E, Bahlmann F, Weber G. Volume scanning in the evaluation of fetal malformations: a new dimension in prenatal diagnosis. Ultrasound Obstet Gynecol. 1995;5:222–7.

    CAS  Google Scholar 

  7. Merz E, Bahlmann F, Weber G, Macchiella D. Three-dimensional ultrasonography in prenatal diagnosis. J Perinat Med. 1995;23:213–22.

    CAS  Google Scholar 

  8. Abramowicz JS, Kossoff G, Marsal K, Ter Haar G. Safety Statement, 2000 (reconfirmed 2003). International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). Ultrasound Obstet Gynecol. 2003;21:100. SAFETY- ALARA.

    CAS  Google Scholar 

  9. Nelson T, Fowlkes J, Abramowicz J, Church C. Ultrasound biosafety considerations for the practicing sonographer and sinologist. Am Institute Ultrasound Med. 2009;28:139–50.

    Google Scholar 

  10. Maeda K, Kurjak A. The safe use of ultrasound in obstetrics and gynaecology. Donald School J Ultrasound Obstet Gynaecol. 2012;6(3):313–7.

    Google Scholar 

  11. Maeda K, Kurjak A. Diagnostic ultrasound safety. Donald School J Ultrasound Obstet Gynaecol. 2014;8(2):178–83.

    Google Scholar 

  12. Pooh RK, Maeda K, Kurjak A, Sen C, Ebrashy A, Adra A, Dayyabu AL, Wataganara T, de Sá RA, Stanojevic M. 3D/4D sonography - any safety problem. J Perinat Med. 2016;44(2):125–9.

    Google Scholar 

  13. Huang Q, Zeng Z. A review on real-time 3D ultrasound imaging technology. Biomed Res Int. 2017;2017:6027029.

    Google Scholar 

  14. Wang T, Wu J, Huang Q. Enhanced extended-field-of-view ultrasound for musculoskeletal tissues using parallel computing. Curr Med Imaging Rev. 2014;10(4):237–45.

    Google Scholar 

  15. Gonçalves LF. Three-dimensional ultrasound of the fetus: how does it help? Pediatr Radiol. 2016;46:177.

    Google Scholar 

  16. Tache V, Tarsa M, Romine L, et al. Three-dimensional obstetric ultrasound. Semin Ultrasound CT MR. 2008;29:147–55.

    Google Scholar 

  17. Lancellotti P, Zamorano JL, Habib G, Badano LP. The EACVI textbook of echocardiography. 2nd: Oxford University Press; 2016.

    Google Scholar 

  18. Nelson TR, Pretorius DH, Hull A, et al. Sources and impact of artifacts on clinical three-dimensional ultrasound imaging. Ultrasound Obstet Gynecol. 2000;16:374–83.

    CAS  Google Scholar 

  19. Riccabona M. Editorial review: pediatric 3D ultrasound. J Ultrason. 2014;14(56):5–20. https://doi.org/10.15557/JoU.2014.0001.

    Article  Google Scholar 

  20. Stanojevic M, Hafner T, Kurjak A. Three-dimensional (3D) ultrasound--a useful imaging technique in the assessment of neonatal brain. J Perinat Med. 2002;30(1):74–83.

    Google Scholar 

  21. Smith SW, Trahey GE. von ramm OT. Two-dimensional arrays for medical ultrasound. Ultrason Imaging. 1992;14(3):213–33.

    CAS  Google Scholar 

  22. Deng J. Nomenclature of 3D and 4D Ultrasound in obstetrics, gynecology and fetal echocardiography. In: Merz E, Kurjak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 61–74.

    Google Scholar 

  23. Houck RC, Cooke J, Gill EA. Three-dimensional echo: transition from theory to real-time, a technology now ready for prime time. Curr Probl Diagn Radiol. 2005;34(3):85–105.

    Google Scholar 

  24. Wang XF, Deng YB, Nanda NC, Deng J, Miller AP, Xie MX. Live three-dimensional echocardiography: imaging principles and clinical application. Echocardiography. 2003;20(7):593–604.

    Google Scholar 

  25. Chatterjee R, Deng J, Pellerin D, Todd-Pokropek A, Neild GH, Lees WR, Rodeck CH. Feasibility of dynamic 3-D color Doppler ultrasound for imaging penile vascular change in renal transplant patients with erectile dysfunction responding to sildenafil. Ultrasound Med Biol. 2008;34(6):885–91.

    Google Scholar 

  26. Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S. ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348–59.

    Google Scholar 

  27. Abramowicz JS, Kossoff G, Marsal K, Ter Haar G. ISUOG Bioeffects and Safety Committee. Safety Statement, 2000 (reconfirmed 2003). International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). Ultrasound Obstet Gynecol. 2003;21(1):100.

    CAS  Google Scholar 

  28. Miric Tesanic D, Merz E. Artifacts and pitfalls in 3D ultrasound. In: Merz E, Kurjak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 218–24.

    Google Scholar 

  29. Spalldi Barišić L, Stanojević M, Kurjak A, Porović S, Gaber G. Diagnosis of fetal syndromes by three- and four-dimensional ultrasound: is there any improvement? J Perinat Med. 2017;45(6):651–65.

    Google Scholar 

  30. Benoit B, Chaoui R. Three-dimensional ultrasound with maximal mode rendering: a novel technique for the diagnosis of bilateral or unilateral absence or hypoplasia of nasal bones in second-trimester screening for Down syndrome. Ultrasound Obstet Gynecol. 2005;25(1):19–24.

    CAS  Google Scholar 

  31. Kurjak A, Miskovic B, Andonotopo W, Stanojevic M, Azumendi G, Vrcic H. How useful is 3D and 4D ultrasound in perinatal medicine? J Perinat Med. 2007;35(1):10–27.

    Google Scholar 

  32. Persico N, Molina F, Azumendi G, Fedele L, Nicolaides KH. Nasal bone assessment in fetuses with trisomy 21 at 16-24 weeks of gestation by three-dimensional ultrasound. Prenat Diagn. 2012;32(3):240–4.

    Google Scholar 

  33. Merz E, Pashaj S. Advantages of 3D ultrasound in the assessment of fetal abnormalities. J Perinat Med. 2017;45(6):643–50. https://doi.org/10.1515/jpm-2016-0379.

    Article  Google Scholar 

  34. Chaoui R, Heling KS. 3D ultrasound in prenatal diagnosis: a practical approach. 2016. De Gruyter.

    Google Scholar 

  35. Pooh RK, Kurjak A. Novel application of three-dimensional HDlive imaging in prenatal diagnosis from the first trimester. J Perinat Med. 2015;43(2):147–58.

    Google Scholar 

  36. Pooh RK, Kurjak A. Donald school atlas of advanced ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2015.

    Google Scholar 

  37. Bonilla-Musoles F, Raga F, Castillo JC, Bonilla F Jr, Climent MT, Caballero O. High definition real-time ultrasound (HDlive) of embryonic and fetal malformations before week 16. Donald School J Ultrasound Obstet Gynecol. 2013;7:1–8.

    Google Scholar 

  38. Kagan KO, Pintoffl K, Hoopmann M. First-trimester ultrasound images using HDlive. Ultrasound Obstet Gynecol. 2011;38:607.

    CAS  Google Scholar 

  39. Hata T. HDlive rendering image at 6 weeks of gestation. J Med Ultrason. 2013;40:495–6.

    Google Scholar 

  40. Hata T, Mashima M, Ito M, Uketa E, Mori N, Ishimura M. Three-dimensional HDlive rendering images of the fetal heart. Ultrasound Med Biol. 2013;39:1513–7.

    Google Scholar 

  41. Hanaoka U, Tanaka H, Koyano K, Uematsu R, Kanenishi K, Hata T. HDlive imaging of the face of fetuses with autosomal trisomies. J Med Ultrason. 2014;41:339–42.

    Google Scholar 

  42. Pooh RK, Kurjak A. 3D/4D sonography moved prenatal diagnosis of fetal anomalies from the second to the first trimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25:433–55.

    Google Scholar 

  43. Pooh RK. Novel application of HDlive Silhouette and HDlive flow: clinical significance of the “see-through fashion” in prenatal diagnosis. Donald School J Ultrasound Obstet Gynecol. 2016;10:90–8.

    Google Scholar 

  44. Pooh RK, Kurjak A. Three-dimensional ultrasound in detection of fetal anomalies. Donald School J Ultrasound Obstet Gynecol. 2016;10:214–34.

    Google Scholar 

  45. Tonni G, Castigliano AP, Grisolia G, Lithuania M, Meagher S, Da Silva CF, et al. HDlive in early gestation. J Turk Ger Gynecol Assoc. 2016;17:110–9.

    Google Scholar 

  46. Pooh RK. Recent advances in 3D ultrasound, silhouette ultrasound, and sonoangiogram in fetal neurology. Donald School J Ultrasound Obstet Gynecol. 2016;10:193–200.

    Google Scholar 

  47. Barišić LS, Kurjak A, Pooh RK, Delić T, Stanojević M, Porović S. Antenatal detection of fetal syndromes by ultrasound: from a single piece to a complete puzzle. Donald School J Ultrasound Obstet Gynecol. 2016;10:63–77.

    Google Scholar 

  48. Tenkumo C, Hanaoka U, AboEllail MAM, Ishimura M, Morine M, Maeda K, Hata T. HDlive flow with HDlive silhouette mode in diagnosis of fetal hepatic hemangioma. Ultrasound Obstet Gynecol. 2017;49:540–5.

    Google Scholar 

  49. Hata T, Kanenishi K, Hanaoka U. HDlive flow silhouette mode for fetal heart. Donald School J Ultrasound Obstet Gynecol. 2019;13(1):10–22.

    Google Scholar 

  50. Timor-Tritsch IE, Peisner DB, Raju S. Sonoembryology: an organ-oriented approach using a high-frequency vaginal probe. J Clin Ultrasound. 1990;18:286–98.

    CAS  Google Scholar 

  51. Benoit B, Hafner T, Kurjak A, Kupesic S, Bekavac I, Bozek T. Three-dimensional sonoembryology. J Perinat Med. 2002;30(1):63–73.

    Google Scholar 

  52. Kurjak A, Pooh RK, Merce LT, Carrera JM, Salihagic-Kadic A, Andonotopo W. Structural and functional early human development assessed by three-dimensional and four-dimensional sonography. Fertil Steril. 2005;84(5):1285–99.

    Google Scholar 

  53. Blaas H-GK, Eik-Nes SH. Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn. 2009;29(4):312–25.

    Google Scholar 

  54. Pooh RK. Sonoembryology by 3D HDlive silhouette ultrasound - what is added by the “see-through fashion”? J Perinat Med. 2016;44(2):139–48.

    Google Scholar 

  55. Pooh RK. A new field of ‘fetal sono-ophthalmology’ by 3D HDlive silhouette and flow. Donald School J Ultrasound Obstet Gynecol. 2015;9(3):221–2.

    Google Scholar 

  56. Pooh RK, Shiota K, Kurjak A. Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21st century. Am J Obstet Gynecol. 2011;204:77.

    Google Scholar 

  57. Hata T, Dai SY, Kanenishi K, Tanaka H. Three-dimensional volume-rendered imaging of embryonic brain vesicles using inversion mode. J Obstet Gynaecol Res. 2009;35:258–61. 31.

    Google Scholar 

  58. Pooh RK. Neurosonoembryology by three-dimensional ultrasound. Semin Fetal Neonatal Med. 2012;17:261–8.

    Google Scholar 

  59. Kim MS, Jeanty P, Turner C, Benoit B. Three-dimensional sonographic evaluations of embryonic brain development. J Ultrasound Med. 2008;27:119–24.

    Google Scholar 

  60. Kim JG. Ultrasonographic evaluation of embryonic cardiac development. In: Kurajak A, Chervenak FA, editors. Donald school embryo as a person and as a patient. New Delhi: Jaypee Brothers Medical Publishers; 2019. p. 105–16.

    Google Scholar 

  61. Wilson RD, Johnson MP. Congenital abdominal wall defects: an update. Fetal Diagn Ther. 2004;19(5):385–98.

    Google Scholar 

  62. Pooh RK. Sonoembryology. In: Kurajak A, Chervenak FA, editors. Donald school embryo as a person and as a patient. New Delhi: Jaypee Brothers Medical Publishers; 2019. p. 19–28.

    Google Scholar 

  63. Merz E, Pashaj S. Embryonic and early fetal abnormalities diagnosed with 3D US in the first trimester. In: Kurajak A, Chervenak FA, editors. Donald school embryo as a person and as a patient. New Delhi: Jaypee Brothers Medical Publishers; 2019. p. 51–65.

    Google Scholar 

  64. Merz E, Pashaj S. What is known about corpus callosum prenatally? Donald School J Ultrasound Obstet Gynecol. 2016;10:163–9.

    Google Scholar 

  65. Pashaj S, Merz E. Advantage of 3D US in exact diagnosis of normal and abnormal corpus callosum. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. In Merz E, Kurjak A (ed). New Delhi: Jaypee Brothers Medical Publishers 2020. 252–262.

    Google Scholar 

  66. Bonilla-Musoles F, Raga F, Castillo JC, Bonilla F Jr, Climent MT, Caballero O. High definition real-time ultrasound (HDlive) of embryonic and fetal malformations before week 16. Donald School J Ultrasound Obstet Gynecol. 2013;7:1–8.

    Google Scholar 

  67. Boitor-Borza D, Kovacs T, Stamatian F. Ganglionic eminence within the early developing brain visualized by 3D transvaginal ultrasound. Med Ultrason. 2015;17(3):289–94.

    Google Scholar 

  68. Tan S, Gülden Tangal N, Kanat-Pektas M, Sirin Özcan A, Levent Keskin H, Akgündüz G. Abnormal sonographic appearances of the yolk sac: which can be associated with adverse perinatal outcome? Med Ultrason. 2014;16(1):15–20.

    Google Scholar 

  69. Merz E. Transvaginal dertection of fetal anomalies. In: Merz E, Bahlmann F, editors. Ultrasound in obstetrics and gynecology. Stuttgart, New York: Thieme; 2005. p. 45–8.

    Google Scholar 

  70. Solomon BD, Gropman A, Muenke M. Holoprosencephaly overview. GeneReviews. 2013; http://www.ncbi.nlm.nih.gov/books/NBK1530/.

  71. Kagan KO, Staboulidou I, Syngelaki A, Cruz J, Nicolaides KH. The 11–13-week scan: diagnosis and outcome of holoprosencephaly, exomphalos and megacystis. Ultrasound Obstet Gynecol. 2010;36(1):10–4.

    CAS  Google Scholar 

  72. Kruszka P, Muenke M. Syndromes associated with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178(2):229–37.

    Google Scholar 

  73. Benacerraf BR. Ultrasound of fetal syndromes. 2nd ed. London: Churchill Livingstone; 2008.

    Google Scholar 

  74. Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, et al. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229–49.

    Google Scholar 

  75. Wilkins-Haug L, Porter A, Hawley P, Benson CB. Isolated fetal omphalocele, Beckwith-Wiedemann syndrome, and assisted reproductive technologies. Birth Defects Res A Clin Mol Teratol. 2009;85(1):58–62.

    CAS  Google Scholar 

  76. Johnson JP, Beischel L, Schwanke C, Styren K, Crunk A, Schoof J, Elias AF. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith-Wiedemann syndrome. J Assist Reprod Genet. 2018;35(6):985–92.

    Google Scholar 

  77. Wilson RD, Johnson MP. Congenital abdominal wall defects: an update. Fetal Diagn Ther. 2004;19(5):385–98.

    Google Scholar 

  78. Voskamp BJ, Fleurke-Rozema H, Oude-Rengerink K, Snijders RJ, Bilardo CM, Mol BW, et al. Relationship of isolated single umbilical artery to fetal growth, aneuploidy and perinatal mortality: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013;42(6):622–8.

    CAS  Google Scholar 

  79. Pharoah PO, Cooke RW. A hypothesis for the aetiology of spastic cerebral palsy--the vanishing twin. Dev Med Child Neurol. 1997;39(5):292–6.

    CAS  Google Scholar 

  80. Blickstein I. Cerebral palsy in multifoetal pregnancies: facts and hypotheses. In: Chervenak FA, Kurjak A, editors. Fetal medicine: the clinical care of the fetus as a patient. London: Parthenon Publishing; 1999. p. 368–73.

    Google Scholar 

  81. Pharoah PO, Adi Y. Consequences of in-utero death in a twin pregnancy. Lancet. 2000;355:1597–602.

    CAS  Google Scholar 

  82. Monni MC, Iuculano A, Peddes C, Corda V, Monni G. Vanishing twin syndrome. In: Kurajak A, Chervenak FA, editors. Donald school embryo as a person and as a patient. New Delhi: Jaypee Brothers Medical Publishers; 2019. p. 121–31.

    Google Scholar 

  83. Jauniaux E, Nicolaides KH, Hustin J. Perinatal features associated with placental mesenchymal dysplasia. Placenta. 1997;18:701–6.

    CAS  Google Scholar 

  84. Parveen Z, Tongson-Ignacio JE, Frasier CR, Killeen JL, Thompson KS. Placental mesenchymal dysplasia. Arch Pathol Lab Med. 2007;131:131–7.

    Google Scholar 

  85. Umazume T, Kataoka S, Kamamuta K, et al. Placental mesenchymal dysplasia, a case of intrauterine sudden death of fetus with rupture of cirsoid periumbilical chorionic vessels. Diagn Pathol. 2011;6:38.

    Google Scholar 

  86. Honemeyer U. Three-dimensional ultrasound imaging in the diagnosis of ectopic pregnancy. In: Merz E, Kurajak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 152–68.

    Google Scholar 

  87. Panchal S. Three-dimensional ultrasound in infertility and ectopic pregnancy. In: Merz E, Kurajak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 225–51.

    Google Scholar 

  88. Jones KL. Smith’s recognizable patterns of human malformation. 5th ed. Philadelphia: Elsevier Saunders; 1997.

    Google Scholar 

  89. Rotten D, Levaillant JM, Martinez H, Ducou Le Pointe H, Vicaut E. The fetal mandible: a 2D and 3D sonographic approach to the diagnosis of retrognathia and micrognathia. Ultrasound Obstet Gynecol. 2002;19:122–30.

    CAS  Google Scholar 

  90. Borenstein M, Persico N, Kaihura C, Sonek J, Nicolaides KH. Frontomaxillary facial angle in chromosomally normal fetuses at 11 + 0 to 13 + 6 weeks. Ultrasound Obstet Gynecol. 2007;30:737–41.

    CAS  Google Scholar 

  91. Borenstein M, Persico N, Strobl I, Sonek J, Nicolaides KH. Frontomaxillary and mandibulomaxillary facial angles at 11+0 to 13+6 weeks in fetuses with trisomy 18. Ultrasound Obstet Gynecol. 2007;30:928–33.

    CAS  Google Scholar 

  92. Zalel Y, Gindes L, Achiron R. The fetal mandible: an in utero sonographic evaluation between 11 and 31 weeks’ gestation. Prenat Diagn. 2006;26:163–7.

    Google Scholar 

  93. Roelfsema NM, Hop WCJ, Wladimiroff JW. Three-dimensional sonographic determination of normal fetal mandibular and maxillary size during the second half of pregnancy. Ultrasound Obstet Gynecol. 2006;28:950–7.

    CAS  Google Scholar 

  94. Sonek J, Borenstein M, Dagklis T, Persico N, Nicolaides KH. Frontomaxillary facial angle in fetuses with trisomy 21 at 11–13(6) weeks. Am J Obstet Gynecol. 2007;196:271.e1–4.

    Google Scholar 

  95. Snijders RJM, Noble P, Sebire N, Souka A, Nicolaides KH. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal translucency thickness at 10–14 weeks of gestation. Lancet. 1998;351:343–6.

    Google Scholar 

  96. Teoh M, Meagher S. First-trimester diagnosis of micrognathia as a presentation of Pierre Robin syndrome. Ultrasound Obstet Gynecol. 2003;21:616–8.

    CAS  Google Scholar 

  97. Tsai MY, Lan KC, Ou CY, Chen JH, Chang SY, Hsu TY. Assessment of the facial features and chin development of fetuses with use of serial three-dimensional sonography and the mandibular size monogram in a Chinese population. Am J Obstet Gynecol. 2004;190:541–6.

    Google Scholar 

  98. Evans AK, Rahbar R, Rogers GF, Mulliken JB, Volk MS. Robin sequence: a retrospective review of 115 patients. Int J Pediatr Otorhinolaryngol. 2006;70:973–80.

    Google Scholar 

  99. Too SC, Ahmad Sarji S, Yik S, Ramanujam TM. Malignant epignathus teratoma. Biomed Imaging Interv J. 2008;4:18.

    Google Scholar 

  100. Kumar SY, Shrikrishna U, Shetty J, Sitaram A. Epignathus with fetiform features. J Lab Physicians. 2011;3(1):56–8.

    Google Scholar 

  101. Johnson JM, Moonis G, Green GE, Carmody R, Burbank HN. Syndromes of the first and second branchial arches, part 2: syndromes. Am J Neuroradiol. 2011;32:230–7.

    CAS  Google Scholar 

  102. Castori M, Brancati F, Rinaldi R, Adami L, Mingarelli R, Grammatico P, et al. Antenatal presentation of the oculo-auriculo-vertebral spectrum (OAVS). Am J Med Genet A. 2006;140:1573–9.

    Google Scholar 

  103. Miller TD, Metry D. Multiple accessory tragi as a clue to the diagnosis of the oculo-auriculo-vertebral (Goldenhar) syndrome. J Am Acad Dermatol. 2004;50(2 Suppl):S11–3.

    Google Scholar 

  104. Martinelli P, Maurotti GM, Agangi A, Mazzarelli LL, Bifulco G, Paladini D. Prenatal diagnosis of hemifacial microsomia and ipsilateral cerebellar hypoplasia in a fetus with oculoauriculovertebral spectrum. Ultrasound Obstet Gynecol. 2004;24:199–201.

    CAS  Google Scholar 

  105. Wang R, Martinez-Frias ML, Graham JM Jr. Infants of diabetic mothers are at increased risk for the oculo-auriculo-vertebral sequence: a case-based and case-control approach. J Pediatr. 2002;141:611–7.

    Google Scholar 

  106. Paul A, Trainor PA, Dixon J, Dixon MJ. Treacher Collins syndrome: etiology, pathogenesis and prevention. Eur J Hum Genet. 2009;17:275–83.

    Google Scholar 

  107. Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med. 2008;14:125–33.

    CAS  Google Scholar 

  108. Pereira DC, Bussamra LC, Araujo Júnior E, Drummond CL, Nardozza LM, Moron AF, et al. Prenatal diagnosis of Treacher-Collins syndrome using three-dimensional ultrasonography and differential diagnosis with other acrofacial dysostosis syndromes. Case Rep Obstet Gynecol. 2013;2013:203976.

    Google Scholar 

  109. Faro C, Benoit B, Wegrzyn P, Chaoui R, Nicolaides KH. Three-dimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol. 2005;26(6):618–21.

    CAS  Google Scholar 

  110. Chaoui R, Levaillant JM, Benoit B, Faro C, Wegrzyn P, Nicolaides KH. Three-dimensional sonographic description of abnormal metopic suture in second- and third-trimester fetuses. Ultrasound Obstet Gynecol. 2005;26(7):761–4.

    CAS  Google Scholar 

  111. Winter TC, Kennedy AM, Byrne J, Woodward PJ. The cavum septi pellucidi: why is it important? J Ultrasound Med. 2010;29(3):427–44.

    Google Scholar 

  112. International Society of Ultrasound in Obstetrics and Gynecology Education Committee. Sonographic examination of the fetal central nervous system: guidelines for performing the “basic examination” and the “fetal neurosonogram.”. Ultrasound Obstet Gynecol. 2007;29:109–16.

    Google Scholar 

  113. McGahan J, Pilu G, Nyberg D. Cerebral malformations. In: Nyberg D, McGahan J, Pretorius D, Pilu G, editors. Diagnostic imaging of fetal anomalies. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 221–90.

    Google Scholar 

  114. Callen PW, Callen AL, Glenn OA, Toi A. Columns of the fornix, not to be mistaken for the cavum septi pellucidi on prenatal sonography. J Ultrasound Med. 2008;27:25–31.

    Google Scholar 

  115. Barkovich AJ, Norman D. Absence of the septum pellucidum: a useful sign in the diagnosis of congenital brain malformations. AJR Am J Roentgenol. 1989;152:353–60.

    CAS  Google Scholar 

  116. Filly RA, Cardoza JD, Goldstein RB, Barkovich AJ. Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram. Radiology. 1989;172:403–8.

    CAS  Google Scholar 

  117. Esin S, Tarim E, Şen C. Three-dimensional ultrasonographic evaluation of the fetal posterior fossa. In: Merz E, Kurajak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 296–9.

    Google Scholar 

  118. Pooh RK, Kurjak A. 3D and 4D sonography and magnetic resonance in the assessment of normal and abnormal CNS development: alternative or complementary. J Perinat Med. 2011;39(1):3–13.

    Google Scholar 

  119. Benoit B. The value of three-dimensional ultrasonography in the screening of the fetal skeleton. Childs Nerv Syst. 2003;19(7–8):403–9.

    Google Scholar 

  120. Yagel S, Cohen SM, Shapiro I, Messing B, Valsky DV. Three- and four dimensional ultrasound in fetal echocardiography: a new look at the fetal heart. In: Merz E, Kurjak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 321–44.

    Google Scholar 

  121. Gonçalves LF, Lee W, Chaiworapongsa T, et al. Four-dimensional ultrasonography of the fetal heart with spatio-temporal image correlation. Am J Obstet Gynecol. 2003;189:1792–802.

    Google Scholar 

  122. Yagel S, Cohen SM, Shapiro I, Valsky DV. 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol. 2007;29:81–95.

    CAS  Google Scholar 

  123. Gonçalves LF, Espinoza J, Romero R, Kusanovic JP, Swope B, Nien JK, Erez O, Soto E, Treadwell MC. Four-dimensional ultrasonography of the fetal heart using a novel Tomographic Ultrasound Imaging (TUI) display. J Perinat Med. 2006;34(1):39–55.

    Google Scholar 

  124. Espinoza J, Gonçalves LF, Lee W, Mazor M, Romero R. A novel method to improve prenatal diagnosis of abnormal systemic venous connections using three- and four-dimensional ultrasonography and 'inversion mode'. Ultrasound Obstet Gynecol. 2005;25(5):428–34.

    CAS  Google Scholar 

  125. Veronese P, Bogana G, Cerutti A, Yeo L, Romero R, Gervasi MT. A prospective study of the use of fetal intelligent navigation echocardiography (FINE) to obtain standard fetal echocardiography views. Fetal Diagn Ther. 2017;41(2):89–99.

    Google Scholar 

  126. Yeo L, Luewan S, Markush D, Gill N, Romero R. Prenatal diagnosis of dextrocardia with complex congenital heart disease using fetal intelligent navigation echocardiography (FINE) and a literature review. Fetal Diagn Ther. 2018;43(4):304–16.

    Google Scholar 

  127. Nijhuis JG. Neurobehavioral development of the fetal brain. In: Nijhuis JG, editor. Fetal behaviour: developmental and perinatal aspects. Oxford, UK: Oxford University Press; 1992. p. 489.

    Google Scholar 

  128. Nijhuis JG. Fetal behavior. Neurobiol Aging. 2003;24:41–6.

    Google Scholar 

  129. Prechtl HF. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev. 1990;23(3):151–8.

    CAS  Google Scholar 

  130. De Vries JIP, Visser GHA, Prechtl HFR. The emergence of fetal behavior. Individual differencies and consistencies. Early Hum Dev. 1988;16:85–103.

    Google Scholar 

  131. Kurjak A, Carrera J, Medic M, Azumendi G, Andonotopo W, Stanojevic M. The antenatal development of fetal behavioral patterns assessed by four-dimensional sonography. J Matern Fetal Neonatal Med. 2005;17(6):401–16.

    CAS  Google Scholar 

  132. Kurjak A, Tikvica A, Stanojevic M, Miskovic B, Ahmed B, Azumendi G, Di Renzo GC. Assessment of fetal neurobehavior by 3D/4D ultrasound. J Matern Fetal Neonatal Med. 2008;21(10):675–84.

    Google Scholar 

  133. Kurjak A, Miskovic B, Stanojevic M, Amiel-Tison C, Ahmed B, Azumendi G, et al. New scoring system for fetal neurobehavior assessed by three- and four-dimensional sonography. J Perinat Med. 2008;36(1):73–81.

    Google Scholar 

  134. Stanojevic M, Antsaklis P, Kadic AS, Predojevic M, Vladareanu R, Vladareanu S, et al. Is kurjak antenatal neurodevelopmental test ready for routine clinical application? Bucharest consensus statement. Donald School J Ultrasound Obstet Gynecol. 2015;9:260–5.

    Google Scholar 

  135. Kurjak A, Abo-Yaqoub S, Stanojevic M, Yigiter AB, Vasilj O, Lebit D, et al. The potential of 4D sonography in the assessment of fetal neurobehavior – multicentric study in high-risk pregnancies. J Perinat Med. 2010;38:77–82.

    Google Scholar 

  136. Stanojevic M, Talic A, Miskovic B, et al. An attempt to standardize Kurjak’s antenatal neurodevelopmental test: Osaka Consensus Statement. Donald School J Ultrasound Obstet Gynecol. 2011;5:317–29.

    Google Scholar 

  137. Yigiter AB, Kavak ZN. Normal standards of fetal behavior assessed by four-dimensional sonography. J Matern Fetal Neonatal Med. 2006;19:707–21.

    Google Scholar 

  138. Rees S, Harding R. Brain development during fetal life: influences of the intrauterine environment. Neurosci Lett. 2004;361:111–4.

    CAS  Google Scholar 

  139. Joseph R. Fetal brain and cognitive development. Dev Rev. 1999;20:81–98.

    Google Scholar 

  140. Kurjak A, Carrera JM, Stanojevic M, et al. The role of 4D sonography in the neurological assessment of early human development. Ultrasound Rev Obstet Gynecol. 2004;4:148–59.

    Google Scholar 

  141. Kurjak A, Antsaklis P. Four-dimensional ultrasound in functional studies of the fetus. In: Merz E, Kurajak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 198–209.

    Google Scholar 

  142. Kurjak A, Spalldi Barišić L, Stanojević M, Antsaklis P, Panchal S, Honemeyer U, et al. Multi-center results on the clinical use of KANET. J Perinat Med. 2019;47(9):897–909.

    Google Scholar 

  143. Kurjak A, Stanojević M, Andonotopo W, Salihagic-Kadic A, Carrera JM, Azumendi G. Behavioral pattern continuity from prenatal to postnatal life – a study by four-dimensional (4D) ultrasonography. J Perinat Med. 2004;32:346–53.

    Google Scholar 

  144. Kurjak A, Stanojevic M, Andonotopo W, et al. Fetal behavior assessed in all three trimesters of normal pregnancy by four-dimensional ultrasonography. Croat Med J. 2005;46:772–80.

    Google Scholar 

  145. Stanojevic M, Kurjak A, Salihagic-Kadic A, et al. Neurobehavioral continuity from fetus to neonate. J Perinat Med. 2011;39:171–7.

    Google Scholar 

  146. Tomasovic S, Predojevic M. Four-dimensional ultrasound medical devices for recent advances on the etiology of cerebral palsy. Acta Inform Med. 2011;19:228–34. Vladareanu R, Lebit D, Constantinescu S. Ultrasound assessment of fetal neurobehavior in high-risk pregnancies. Donald School J Ultrasound Obstet Gynecol. 2012;6:132–47.

    Google Scholar 

  147. Honemeyer U, Talic A, Therwat A, Paulose I, Patidar R. The clinical value of KANET test in studying fetal neurobehavior in normal and at-risk pregnancies. J Perinat Med. 2013;41:187–97.

    Google Scholar 

  148. Kuno A, Akiyama M, Yamashiro C, Tanaka H, Yanagihara T, Hata T. Three-dimensional sonographic assessment of fetal behaviour in the early second trimester of pregnancy. J Ultrasound Med. 2001;20:1271–5.

    CAS  Google Scholar 

  149. Salihagic KA. Fetal neurology: the role of fetal stress. Donald School J Ultrasound Obstet Gynecol. 2015;9:30–9.

    Google Scholar 

  150. Hata T, Kanenishi J, Hanoka U, Uematsu R, Marumo G, Tanaka H. HDlive study of fetal development and behavior. Donald School J Ultrasound Obstet Gynecol. 2014;8:250–65.

    Google Scholar 

  151. Reynoso C, Crespo-Eguílaz N, Alcázar JL, Narbona J. Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study. An Pediatr (Barc). 2015;82:183–91.

    CAS  Google Scholar 

  152. Predojević M, Talić A, Stanojević M, Kurjak A, Salihagić KA. Assessment of motoric and hemodynamic parameters in growth restricted fetuses – case study. J Matern Fetal Neonatal Med. 2014;27:247–51.

    Google Scholar 

  153. Kurjak A, Talic A, Stanojevic M, Honemeyer U, Serra B, Prats P, et al. The study of fetal neurobehavior in twins in all three trimesters of pregnancy. J Matern Fetal Neonatal Med. 2013;26:1186–95.

    Google Scholar 

  154. Kurjak A, Talic A, Honemeyer U, Stanojevic M, Zalud I. Comparison between antenatal neurodevelopmental test and fetal Doppler in the assessment of fetal wellbeing. J Perinat Med. 2013;41:107–14.

    Google Scholar 

  155. Athanasiadis AP, Mikos T, Tambakoudis GP, Theodoridis TD, Papastergiou M, Assimakopoulos E, et al. Neurodevelopmental fetal assessment using KANET scoring system in low and high risk pregnancies. J Matern Fetal Neonatal Med. 2013;26:363–8.

    Google Scholar 

  156. Guimarães Filho HA, Araujo Júnior E, Mello Júnior CF, Nardozza LM, Moron AF. Assessment of fetal behavior using four-dimensional ultrasonography: current knowledge and perspectives. Rev Assoc Med Bras. 2013;59:507–13.

    Google Scholar 

  157. Kurjak A, Stanojević M, Predojević M, Laušin I, Salihagić KA. Neurobehavior in fetal life. Semin Fetal Neonatal Med. 2012;17:319–23.

    CAS  Google Scholar 

  158. Stanojevic M, Zaputovic S, Bosnjak AP. Continuity between fetal and neonatal neurobehavior. Semin Fetal Neonatal Med. 2012;17:324–9.

    Google Scholar 

  159. Kurjak A, Predojevic M, Stanojevic M, Kadic AS, Miskovic B, Badreldeen A, et al. Intrauterine growth restriction and cerebral palsy. Acta Inform Med. 2012;18:64–82.

    Google Scholar 

  160. Talic A, Kurjak A, Stanojevic M, Honemeyer U, Badreldeen A, DiRenzo GC. The assessment of fetal brain function in fetuses with ventrikulomegaly: the role of the KANET test. J Matern Fetal Neonatal Med. 2012;25:1267–72.

    Google Scholar 

  161. Talic A, Kurjak A, Ahmed B, Stanojevic M, Predojevic M, Kadic AS, et al. The potential of 4D sonography in the assessment of fetal behavior in high-risk pregnancies. J Matern Fetal Neonatal Med. 2011;24:948–54.

    Google Scholar 

  162. Kurjak A, Antsaklis P, Stanojević M, Vladareanu R, Vladareanu S, Moreira Neto R, et al. Multicentric studies of the fetal neurobehavior by KANET. J Perinat Med. 2017;45:717–27.

    Google Scholar 

  163. Miskovic B, Vasilj O, Stanojevic M, Ivanković D, Kerner M, Tikvica A. The comparison of fetal behavior in high risk and normal pregnancies assessed by four dimensional ultrasound. J Matern Fetal Neonatal Med. 2010;23:1461–7.

    Google Scholar 

  164. Honemeyer U, Kurjak A. The use of KANET test to assess fetal CNS function. First 100 cases. 10th World Congress of Perinatal Medicine 8–11 November 2011. Uruguay: Poster Presentation P. 209.

    Google Scholar 

  165. Abo-Yaqoub S, Kurjak A, Mohammed AB, Shadad A, Abdel-Maaboud M. The role of 4-D ultrasonography in prenatal assessment of fetal neurobehaviour and prediction of neurological outcome. J Matern Fetal Neonatal Med. 2012;25:231–6.

    Google Scholar 

  166. Hanaoka U, Hata T, Kanenishi K, AboEllail MAM, Uematsu R, Konishi Y, et al. Does ethnicity have an effect on fetal behavior? A comparison of Asian and Caucasian populations. J Perinat Med. 2016;44:217–21.

    Google Scholar 

  167. Hata T, Hanaoka U, AboEllail MAM, Uematsu R, Noguchi J, Kusaka T, et al. Is there a sex difference in fetal behavior? A comparison of the KANET test between male and female fetuses. J Perinat Med. 2016;44:585–8.

    Google Scholar 

  168. Antsaklis P, Porovic S, Daskalakis G, Kurjak A. 4D assessment of fetal brain function in diabetic patients. J Perinat Med. 2017;45:711–5.

    CAS  Google Scholar 

  169. Hata T, Kanenishi K, Mori N, Abo Ellail MAM, Hanaoka U, Koyano K, et al. Prediction of postnatal developmental disabilities using the antenatal fetal neurodevelopmental test: KANET assessment. J Perinat Med. 2018;47:77–81.

    Google Scholar 

  170. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Australian Collaborative Cerebral Palsy Research Group. Am J Obstet Gynecol. 2015;213:779–88.

    Google Scholar 

  171. Kurjak A, Stanojevic M, Azumendi G, Carrera JM. The potential of four-dimensional (4D) ultrasonography in the assessment of fetal awareness. J Perinat Med. 2005;33(1):46–53.

    Google Scholar 

  172. Kurjak A, Barišić LS, Stanojević M, Kadić AS, Porović S. Are we ready to investigate cognitive function of fetal brain? The role of advanced four-dimensional sonography. Donald School J Ultrasound Obstet Gynecol. 2016;10:116–24.

    Google Scholar 

  173. Haak P, Lenski M, Hidecker MJ, Li M, Paneth N. Cerebral palsy and aging. Dev Med Child Neurol. 2009;51:16–23.

    Google Scholar 

  174. Robinson EB, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48:552–5.

    CAS  Google Scholar 

  175. Kunze A, Achilles A, Keiner S, Witte OW, Redecker C. Two distinct populations of double cortin-positive cells in the perilesional zone of cortical infarcts. BMC Neurosci. 2015;16:20.

    Google Scholar 

  176. Kunze A, Grass S, Witte OW, Yamaguchi M, Kempermann G, Redecker C. Proliferative response of distinct hippocampal progenitor cell populations after cortical infarcts in the adult brain. Neurobiol Dis. 2006;21:324–32.

    CAS  Google Scholar 

  177. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl. 2004;93:26–33.

    CAS  Google Scholar 

  178. Leckman JF, Feldman R, Swain JE, Eicher V, Thompson N, Mayes LC. Primary parental preoccupation: circuits, genes, and the crucial role of the environment. J Neural Transm (Vienna). 2004;111(7):753–71.

    CAS  Google Scholar 

  179. Ji E, Pretorius D, Newton R, Uyans K, Hull A, Hollenbach K, et al. Effects of ultrasound on maternal-fetal bonding: a comparison of 2D and 3D imaging. Ultrasound Obstet Gynecol. 2005;25:473–7.

    Google Scholar 

  180. Campbell S. Opinion. 4D and prenatal bonding: still more questions than answers. Ultrasound Obstet Gynecol. 2006;27:243–4.

    CAS  Google Scholar 

  181. de Jong-Pleij EA, Ribbert LS, Pistorius LR, Tromp E, Mulder EJ, Bilardo CM. Three-dimensional ultrasound and maternal bonding, a third trimester study and a review. Prenat Diagn. 2013;33(1):81–8.

    Google Scholar 

  182. Pretorius DH, Gattu S, Ji EK, Hollenbach K, Newton R, Hull A, Carmona S, D’Agostini D, et al. Preexamination and postexamination assessment of parental-fetal bonding in patients undergoing 3-/4-dimensional obstetric ultrasonography. J Ultrasound Med. 2006;25(11):1411–21.

    Google Scholar 

  183. Rovner LM, Horton KT, Perez MI, Pretorius DH. Three-dimensional ultrasoundand maternal bonding. In: Merz E, Kurajak A, editors. Donald school textbook current status of clinical use of 3D/4D ultrasound in obstetrics and gynecology. New Delhi: Jaypee Brothers Medical Publishers; 2020. p. 263–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurjak, A., Spalldi Barišić, L. (2022). Clinical Use of 3D Sonography. In: Moreira de Sá, R.A., Fonseca, E.B.d. (eds) Perinatology. Springer, Cham. https://doi.org/10.1007/978-3-030-83434-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83434-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83433-3

  • Online ISBN: 978-3-030-83434-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics