Skip to main content

Ecological Restoration of Pantanal Wetlands

  • Chapter
  • First Online:
Flora and Vegetation of the Pantanal Wetland

Abstract

Degradation affects approximately three-quarters of the global wetland area. Depending on degradation drivers, resilience level, and environmental filters, different ecological restoration techniques are recommendable. The scope of this chapter is broadening the current analysis of the restoration effort made in Pantanal wetlands. We intended to include all available restoration studies in the Pantanal and discuss current public policies. In this context, we firstly reviewed restoration studies worldwide pointing some trends and gaps in wetlands. Then, focusing on the Pantanal, we discuss a recent map of the Brazilian biomes showing areas of low and high resilience, the latter being faster to restore. Next, we show a synthesis of our studies on active and passive restoration conducted in the Pantanal plain and surrounding uplands. We warn that a previous diagnosis for restoration is crucial to choose proper techniques related to resilience level. In a 2-month flood simulation trial, all 13 studied species survived, and only two had decreased root biomass, height, and diameter. Passive restoration (i.e., natural regeneration) of degraded areas after clearing (axe-logging and burning) in the Nhecolândia subregion, considered as a “high-resilient” site, takes 30 years; it is the cheapest and most efficient method if there is resilience. In contrast, direct sowing of ten tree species was ineffective, owing to inefficient pre- and post-sowing control of competitive exotic grasses, with only ten plants/ha of three species at 16 months after sowing; the tallest was Sterculia apetala (2–3 m) compared with Dipteryx alata and Vitex cymosa (1.3 m each). A third experiment focused on transplanting seedlings of four riparian species (Attalea phalerata, Inga vera, Ocotea diospyrifolia, and Psychotria carthagenensis). They had 0–80% survival after 8 months of flood, depending on species, seedling size-class, flood levels of collecting or planting points, and anti-herbivory protection; tree shelters highly increased survival. Finally, another study tested nucleation with topsoil transfer and artificial perches; the first species to fruit were Croton urucurana and Trema micrantha. Examples shown can be useful for planning, implementation, and monitoring ecological restoration in the Pantanal, as well as for understanding new challenges and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdon MDM, Silva JSV, Marselhas ID et al (2007) Desmatamento no bioma Pantanal até o ano 2002: relações com a fitofisionomia e limites municipais. R Bras Cart 59(1):17–24

    Google Scholar 

  • Abreu TSS (2013) Dinâmica florestal e aplicação de técnicas nucleadoras para restauração ecológica em área de preservação permanente da Fazenda Experimental da Universidade Federal da Grande Dourados, MS. Dissertation, Universidade Federal da Grande Dourados

    Google Scholar 

  • Alday JG, Pallavicini Y, Marrs RH et al (2011) Functional groups and dispersal strategies as guides for predicting vegetation dynamics on reclaimed mines. Plant Ecol 212:1759–1775

    Article  Google Scholar 

  • Allen EB, Brown JS, Allen MF (2001) Restoration of animal, plant and microbial diversity. Encycl Biodv 5:185–202

    Google Scholar 

  • Antoniazzi L, Sartorelli P, Costa K et al (2016) Restauração florestal em cadeias agropecuárias para adequação ao código florestal: análise econômica de oito estados brasileiros. Agroicone, INPUT, Brasil

    Google Scholar 

  • Arruda GMT, Calbo MER (2004) Efeitos da inundação no crescimento, trocas gasosas e porosidade radicular da carnaúba (Copernicia prunifera (Mill.) H.E. Moore). Acta Bot Bras 18:219–224

    Article  Google Scholar 

  • Arruda WS, Oldeland J, Paranhos Filho AC et al (2016) Inundation and fire shape the structure of riparian forests in the Pantanal, Brazil. PLoS One 11(6):e0156825

    Article  PubMed Central  Google Scholar 

  • Barral MP, Benayas JMR, Meli P et al (2015) Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric Ecosyst Environ 202:223–231

    Article  Google Scholar 

  • Bogarín MRA, Reis LK, Laura VA, Pott AG, Szabo JK, Garcia LC (In Prep) Morphological and phenological strategies for flooding tolerance in Cerrado and Pantanal trees: implications for restoration under a new legislation

    Google Scholar 

  • Borges FLG, Oliveira MR, Reis LK, Garcia LC (2020) Screens and webs: multifunctional seedling shelters contribute to Araneae restoration. Ecol Eng 158:106026

    Article  Google Scholar 

  • Bradshaw AD (1996) Underlying principles of restoration. Can J Fish Aquat 53:3–9

    Article  Google Scholar 

  • Brancalion PHS, Garcia LC, Loyola R et al (2016) A critical analysis of the native vegetation protection law of Brazil (2012): updates and ongoing initiatives. Nat Conserv 14:1–15

    Article  Google Scholar 

  • Brasil. Lei n.° 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa; altera as Leis n.°s 6.938, de 31 de agosto de 1981, 9.393, de 19 de dezembro de 1996, e 11.428, de 22 de dezembro de 2006; revoga as Leis n.°s 4.771, de 15 de setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória n.° 2.166–67, de 24 de agosto de 2001; e dá outras providências. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 149(102):1–8. Seção 1. In: http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=28/05/2012&jornal=1&pagina=1&totalArquivos=168

  • Calegari L, Martins SV, Busato LC et al (2011) Seedling production of native tree species in nurseries via rescue of young plants. Rev Árvore 35(1):41–50

    Article  Google Scholar 

  • Capon SJ (2005) Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. J Arid Environ 60:283–302

    Article  Google Scholar 

  • Cardoso EL, Salis SM, Crispim SMA et al (2017) Regeneração natural de áreas utilizadas como roça no Pantanal da Nhecolândia. Bol Pesq Desenvolv Embrapa Pantanal 134:1–20

    Google Scholar 

  • Ceccon E, Gonzalez EJ, Martorell C (2016) Is direct seeding a biologically viable strategy for restoring forest ecosystems? Evidence from a meta-analysis. Land Degrad Dev 27:511–520

    Article  Google Scholar 

  • Cherry JA, Ramseur GS, Sparks EL et al (2015) Testing Sea level rise impacts in tidal wetlands: a novel in situ approach. Methods Ecol Evol 6(12):1443–1451

    Article  Google Scholar 

  • Cole RJ, Holl KD, Keene CL et al (2010) Direct seeding of late-successional trees to restore tropical montane forest. For Ecol Manag 261:1590–1597

    Article  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  CAS  PubMed  Google Scholar 

  • Coutinho LM (2006) O conceito de bioma. Acta Bot Bras 20(1):13–23

    Article  Google Scholar 

  • Crawford RMM (1992) Oxygen availability as an ecological limit to plan distribution. Adv Ecol Res 23:93–185

    Article  CAS  Google Scholar 

  • Donatti CI, Galetti M, Pizo MA et al (2007) Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In: Dennis AJ et al (eds) Seed dispersal: theory and its application in a changing world. Cabi Publishing, Cambridge, pp p104–p123

    Chapter  Google Scholar 

  • Dong X, Hengjie Z, Haiting J et al (2013) Ecological restoration of degraded wetlands in China. J Resour Ecol 4(1):63–69

    Google Scholar 

  • Drew MMC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Fattorini M, Halle S (2004) The dynamic environmental filter model: how do filtering effects change in assembling communities after disturbance. In: Temperton VM et al (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, pp 96–114

    Google Scholar 

  • Fróes CQ (2015) Técnica de restauração ecológica aplicada à Área de Preservação Permanente no sul do Mato Grosso do Sul. Dissertation, Universidade Federal da Grande Dourados

    Google Scholar 

  • Garcia LC, Barros FV, Lemos Filho JP (2009) Fructification phenology as an important tool in the recovery of iron mining areas in Minas Gerais, Brazil. Braz J Biol 69:887–893

    Article  CAS  PubMed  Google Scholar 

  • Garcia LC, Santos JSD, Matsumoto M et al (2013) Restoration challenges and opportunities for increasing landscape connectivity under the new Brazilian forest act. Nat Conserv 11:181–185

    Article  Google Scholar 

  • Garcia LC, Hobbs RJ, Santos FAM et al (2014) Flower and fruit availability along a forest restoration gradient. Biotropica 46:114–123

    Article  Google Scholar 

  • Garcia LC, Cianciaruso MV, Ribeiro DB et al (2015) Flower functional trait responses to restoration time. Appl Veg Sci 18:402–412

    Article  Google Scholar 

  • Garcia LC, Ellovitch MF, Rodrigues RR et al (2016) Análise científica e jurídica das mudanças no Código Florestal, a recente Lei de Proteção da Vegetação Nativa. Abeco, UFMS, Rio de Janeiro

    Google Scholar 

  • Garcia LC, Chaves RB, Calmon M et al (2019) Políticas públicas e governança. In: Crouzeilles R et al (eds) Relatório temático sobre restauração de paisagens e ecossistemas. Plataforma Brasileira de Biodiversidade Serviços Ecossistêmicos (BPBES). e Instituto Internacional para Sustentabilidade (IIS), Rio de Janeiro, pp 14–19

    Google Scholar 

  • Garcia LC, Szabo JK, Roque FO, Pereira AMM, Nunes da Cunha C, Damasceno-Júnior GA, Morato RG, Tomas WM, Libonati R, Ribeiro DB (2021) Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. Journal of Environmental Management 293112870-10.1016/j.jenvman.2021.112870

    Google Scholar 

  • Grace JB, Ford MA (1996) The potential impact of herbivores on the susceptibility of the marsh plant Sagittaria lancifolia to saltwater intrusion in coastal wetlands. Estuaries 19:13–20

    Google Scholar 

  • Guerra A, Reis LK, Borges FLG, Ojeda PTA, Pineda DAM, Miranda CO, Laurance SG, Garcia LC (2020a) Ecological restoration in Brazilian biomes: identifying advances and gaps. For Ecol Manag 458:117802

    Article  Google Scholar 

  • Guerra A, Oliveira PTS, Roque FO, Rosa IMD, Ochoa-Quintero JM, Guariento RD, Colman CB, Dib V, Maioli V, Strassburg B, Garcia LC (2020b) The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. J Environ Manag 260:110128

    Article  Google Scholar 

  • Guerra A, Roque F, Garcia LC, Ochoa-Quintero JM, Oliveira PT, Guariento RD, Rosa I (2020c) Drivers and projections of vegetation loss in the Pantanal and neighboring ecosystems. Land Use Policy 91:104388

    Article  Google Scholar 

  • He Q, Silliman BR (2015) Biogeographic consequences of nutrient enrichment for plant-herbivore interactions in coastal wetlands. Ecol Lett 18:462–471

    Article  PubMed  Google Scholar 

  • Hobbs RJ, Norton DA (2004) Ecological filters, thresholds, and gradients in resistance to ecosystem reassembly. In: Temperton VM et al (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, pp 72–95

    Google Scholar 

  • Holl KD, Aide TM (2011) When and where to actively restore ecosystems? For Ecol Manag 261:1558–1563

    Article  Google Scholar 

  • Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Exp Bot 33:799–809

    Article  Google Scholar 

  • Jørgensen D (2015) Ecological restoration as objective, target, and tool in international biodiversity policy. Ecol Soc 20(4):43

    Article  Google Scholar 

  • Junk WJ, Cunha CND, Wantzen KM et al (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso. Brazil Aquatic Sci 68:278–309

    Article  Google Scholar 

  • Keeley JE (1979) Population differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica. Ecol Monogr 49:89–108

    Article  CAS  Google Scholar 

  • King SL, Sharitz RR, Groninger JW et al (2009) The ecology, restoration, and management of southeastern floodplain ecosystems: a synthesis. Wetlands 29:624–634

    Article  Google Scholar 

  • Kirmer A, Tischew S, Ozinga WA et al (2008) Importance of regional species pools and functional traits in colonisation processes: predicting re-colonisation after large-scale destruction of ecosystems. J Appl Ecol 45:1523–1530

    Article  Google Scholar 

  • Kozlowski TT (1984) Plant responses to flooding of soil. Bio Sci 34:162–167

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1(1):1–29

    Google Scholar 

  • Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22:550–561

    Article  Google Scholar 

  • Labadz JC, Butcher DP, Sinnott D (2002) Wetlands and still waters. In: Perrow MR et al (eds) Handbook of ecological restoration. Cambridge University Press, Cambridge, pp 106–132

    Chapter  Google Scholar 

  • LaGrange T (2010) Wetland program plan for Nebraska. Nebraska Game and Parks Commission, Lincoln, 65 p

    Google Scholar 

  • Letícia Koutchin, Reis Angélica, Guerra Maria Luciana Zequim, Colado Felipe Luís Gomes, Borges Maxwell da Rosa, Oliveira Evânia Xavier, Gondim Thomaz Ricardo Favreto, Sinani Natalia, Guerin Letícia Couto, Garcia (2019) Which spatial arrangement of green manure is able to reduce herbivory and invasion of exotic grasses in native species?. Ecological Applications 29(8) 10.1002/eap.2000

    Google Scholar 

  • Libonati R, Sander LA, Peres LF, DaCamara CC, Garcia LC (2020) Rescue Brazil’s burning Pantanal wetlands. Nature 588:217–220

    Article  CAS  PubMed  Google Scholar 

  • Lobo PC, Joly CA (1998) Tolerance to hypoxia and anoxia in neotropical tree species. Oecol Bras 4:137–156

    Article  Google Scholar 

  • Lori AJR, Lee FA (2005) Effects of managed impoundments and herbivory on wetland plant production and stand structure. Wetlands 25(1):38–50

    Article  Google Scholar 

  • Marques MCM, Joly CA (2000) Germinação e crescimento de Calophyllum brasiliense (Clusiaceae), uma espécie típica de florestas inundadas. Acta Bot Bras 14:113–120

    Article  Google Scholar 

  • Martins PI, Belém LBC, Szabo JK, Libonati R, Garcia LC (in Press) Prioritising areas for wildfire prevention and post-fire restoration in the Brazilian Pantanal. Ecological Engineering

    Google Scholar 

  • Meli P, Benayas JMR, Balvanera P et al (2014) Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS One 9(4):e93507

    Article  PubMed  PubMed Central  Google Scholar 

  • Metzger JP, Goldenberg R, Bernacci LC (1998) Diversidade e estrutura de fragmentos de mata de várzea e de mata mesófila semidecídua submontana do rio Jacaré-Pepira (SP). Braz J Bot 21:321–330

    Article  Google Scholar 

  • Moreno-Mateos D, Power ME, Comín FA et al (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10(1):e1001247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes AP, Ticianeli FAT, Tomas WM (2006) Aves ameaçadas ocorrentes no Pantanal. Doc Embr Pant 83:1–47

    Google Scholar 

  • Nuttle T (2007) Evaluation of restoration practice based on environmental filters. Restor Ecol 15(2):330–333

    Article  Google Scholar 

  • Okamoto JM (1998) Ecofisiologia da germinação e do metabolismo respiratório de quatro espécies do gênero Inga Mill. (Mimosaceae) submetidas à hipoxia e anoxia. Dissertation, Universidade Estadual de Campinas

    Google Scholar 

  • Oliveira MT, Damasceno-Junior GA, Pott A, et al (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. Forest Ecol Manag 331:256–263

    Google Scholar 

  • Oliveira AKDM, Gualtieri SCJ (2017) Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (Paratudo) submetidas a alagamento. Ciênc Florest 27:181–191

    Article  Google Scholar 

  • Oliveira ASD, Ferreira CS, Graciano-Ribeiro D et al (2015) Anatomical and morphological modifications in response to flooding by six Cerrado tree species. Acta Bot Bras 29:478–488

    Article  Google Scholar 

  • Paranhos Filho AC, Moreira ES, Oliveira AKMD et al (2014) Analysis of land cover changes using remote sensing between 2003 and 2010 in the Pantanal region. Eng Sanit Ambient 19:69–76

    Article  Google Scholar 

  • Parolin P, Junk WJ (2002) The effect of submergence on seed germination in trees from Amazonian floodplains. Bol Mus Para Emílio Goeldi Sér Bot 18:1–9

    Google Scholar 

  • Pereira ZV, Ribeiro JF, Ogata R et al (2014) Semeadura direta mecanizada na recuperação de Reserva Legal com diversificação de espécies do bioma Cerrado do Distrito Federal. Cad Agroecol 9(4):1–11

    Google Scholar 

  • Pereira ZV, Sangalli A, Padovan MP, Lobtchenko JCP (2020) Ecological restoration in a permanent preservation area in the state of Mato Grosso do Sul. Brazil J Anim Environ Res 3(4):4394–4407

    Article  Google Scholar 

  • Periotto NA, Tundisi JG (2013) Ecosystem services of UHE Carlos Botelho (Lobo/Broa): a new approach for management and planning of dams multiple-uses. Braz J Biol 73(3):471–482

    Article  CAS  PubMed  Google Scholar 

  • Pfadenhauer J, Grootjans A (2009) Wetland restoration in Central Europe: aims and methods. Appl Veg Sci 2(1):95–106

    Article  Google Scholar 

  • Pott A, Oliveira AKM, Damasceno-Junior GA et al (2011) Plant diversity of the Pantanal wetland. Braz J Biol 71:265–273

    Article  CAS  PubMed  Google Scholar 

  • Pott A, Garcia LC, Pereira ZV et al (2018) Potencial de regeneração natural da vegetação do Pantanal. Ministério do Meio Ambiente, p 6

    Google Scholar 

  • Pregelli, DR, Albuquerque L, Gouveia J et al (2008) Recuperação de nascentes em área de Cerrado, Embrapa Gado de Corte, Campo Grande, Brasil. In IX Simpósio Nacional do Cerrado e II Simpósio Internacional Savanas Tropicais, Brasília, DF. In:simposio.cpac.embrapa.br/simposio_pc210/fichas/00578_trab1_ficha.pdf

  • Ramsar (2015) Wetlands: a global disappearing act. Fact sheet 3, February de 2015. https://www.ramsar.org/sites/default/files/documents/library/factsheet3_global_disappearing_act_0.pdf

  • Rebellato L, Cunha CND (2005) Efeito do “fluxo sazonal mínimo da inundação” sobre a composição e estrutura de um campo inundável no Pantanal de Poconé, MT, Brasil. Acta Bot Bras 19(4):789–799

    Article  Google Scholar 

  • Rego NH, Urbanetz C (2017) Potencial do uso da semeadura direta para a recomposição florestal no Pantanal da Nhecolândia, MS. Cir Téc Embr Pant 117:1–6

    Google Scholar 

  • Reis LK, Guerra A, Colado MLZ, Borges FLG, Oliveira MR, Godim EX, Siani TRF, Guerin N, Garcia LC (2019) Which spatial arrangement of green manure is able to reduce herbivory and invasion of exotic grasses in native species? Ecological Applications 29: 1–24.

    Google Scholar 

  • Reis LK, Damasceno-Junior GA, Battaglia L, Garcia LC (2021) Can transplanting seedlings with protection against herbivory be a cost-effective restoration strategy for seasonally flooded environments? For Ecol Manag 483:118742

    Article  Google Scholar 

  • Resende EK (2008) Pulso de inundação: processo ecológico essencial à vida no Pantanal. Doc Embr Pant 94:1–16

    Google Scholar 

  • Rey-Benayas JM, Newton AC, Diaz A et al (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124

    Article  PubMed  Google Scholar 

  • Rezende CE, Kahn JR, Passareli L et al (2015) An economic valuation of mangrove restoration in Brazil. Ecol Econ 1(20):296–302

    Article  Google Scholar 

  • Rodrigues MA, Paoli AAS, Barbosa JM et al (2010) Evaluation of seed rain in areas of Restinga with different regeneration stages. Rev Árvore 34(5):814–824

    Article  Google Scholar 

  • Rodrigues RR, Jakovac CC, Moraes LF, Vieira D, Sampaio AB, Ganade G, Garcia LC, Overbeck GE (2019) Capítulo 5: Práticas de restauração nos diferentes biomas brasileiros. In: Crouzeilles R, Rodrigues RR, Strassburg BBN (eds) BPBES/IIS: Relatório Temático sobre Restauração de Paisagens e Ecossistemas. Editora Cubo, São Carlos, pp 32–37. https://www.bpbes.net.br/wp-content/uploads/2019/10/Relatorio_Restauracao_VF.pdf

    Google Scholar 

  • Roque FO, Ochoa-Quintero J, Ribeiro DB et al (2016) Upland habitat loss as a threat to Pantanal wetlands. Conserv Biol 30(5):1131–1134

    Article  PubMed  Google Scholar 

  • Rovai AS, Barufi JB, Pagliosa PR et al (2013) Photosynthetic performance of restored and natural mangroves under different environmental constraints. Environ Pollut 181:233–241

    Article  CAS  PubMed  Google Scholar 

  • SER – Society for Ecological Restoration International Science and Working Policy Group, Washington DC (2014) The SER International Primer on Ecological Restoration. http://www.ser.org/resources/resources-detail-view/ser-international-primer-on-ecological-restoration

  • Soares VC, Scremin-Dias E, Daibes LF, Damasceno-Junior GA, Pott A, Lima LB (2021) Fire has little to no effect on the enhancement of germination, but buried seeds may survive in a Neotropical wetland. Flora 278:151801

    Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M et al (2014) Cracking Brazil’s forest code. Science 344:363–364

    Article  CAS  PubMed  Google Scholar 

  • Souza RP (2013) Semeadura direta de espécies florestais nativas, como alternativa de restauração ecológica para a região de Dourados, estado do Mato Grosso do Sul. Dissertation, Universidade Federal da Grande Dourados

    Google Scholar 

  • Souza EB, Ferreira FA, Pott A (2016) Effects of flooding and its temporal variation on seedling recruitment from the soil seed bank of a Neotropical floodplain. Acta Bot Bras 30:560–568

    Article  Google Scholar 

  • Tomas WM, Cáceres NC, Nunes AP et al (2010) Mammals in the Pantanal wetland, Brazil. In: Junk WJ et al (eds) The pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 563–595

    Google Scholar 

  • Tomas WM, Garcia LC, Roque FO et al (2018) Análise dos conceitos de “mesma identidade ecológica”, “equivalência ecológica” e “offsetting” para compensação de Reserva Legal. DocEmbr Pant 159:1–30

    Google Scholar 

  • Tomas et al (2019) Sustainability agenda for the Pantanal wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop Conserv Sci 12:1–29

    Article  Google Scholar 

  • Viani RAG, Brancalion PHS, Rodrigues RR (2012) Leaf area reduction and transplant timing for the use of seedlings from understorey in forest restoration. Rev Árvore 36(2):331–339

    Article  Google Scholar 

  • Vogt J, Lin Y, Pranchai A et al (2014) The importance of conspecific facilitation during recruitment and regeneration: a case study in degraded mangroves. Bas Appl Ecol 15(8):651–660

    Article  Google Scholar 

  • Zamith LR, Scarano FR (2010) Restoration of a coastal swamp forest in Southeast Brazil. Wetl Ecol Manag 18(4):435–448

    Article  Google Scholar 

  • Zedler JB (2000) Progress in trends restore ecology. Trends Ecol Evol 15(10):402–407

    Article  CAS  PubMed  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Ann Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zelarayán ML, Celentano D, Oliveira EC et al (2015) Impacto da degradação sobre o estoque total de carbono de florestas ripárias na Amazônia Oriental, Brasil. Acta Amaz 45(3):271–282

    Article  Google Scholar 

  • Zhang YZ, Wang X (2001) A review of ecological restoration studies on natural wetland. Acta Ecol Sin 21(2):309–314

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001, the University of Mato Grosso do Sul, and the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank to teams of ongoing restoration projects in Pantanal: the “Strategic and participative restoration in Pantanal: “Baía Negra” protected area” (LEI/UFMS and ECOA financed by GEF- Terrestre (grant number: 055/2020); and Luan Santana, SOS Pantanal, as well as all companies (EDP) and individuals for financial support to the “Pantanal Call Movement”. LCG thanks to L’Oréal-UNESCO-the Brazilian Academy of Sciences (ABC) for the “For Women in Science” award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, L.C. et al. (2021). Ecological Restoration of Pantanal Wetlands. In: Damasceno-Junior, G.A., Pott, A. (eds) Flora and Vegetation of the Pantanal Wetland. Plant and Vegetation, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-83375-6_20

Download citation

Publish with us

Policies and ethics