Skip to main content

Application of Fluorescent In Situ Hybridization (FISH) in Surgical and Cytologic Specimens (Solid Tumors, Hematopoietic Tumors, Urine, Bile Duct Brushing, and Bronchoscopy)

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

Florescence in situ hybridization (FISH) using chromosome-specific probes has become an important cytogenetic tool in the evaluation of many congenital disorders, hematologic malignancies, some solid tumors and cytologic neoplasm. Due to its interphase analysis, fast, high sensitivity and specificity, both fresh and fixed specimens, it becomes a very informative and rapid adjunct to standard karyotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci. 2003;116(Pt 14):2833–8.

    Article  CAS  PubMed  Google Scholar 

  2. Liehr T, Claussen U. Current developments in human molecular cytogenetic techniques. Curr Mol Med. 2002;2(3):283–97.

    Article  CAS  PubMed  Google Scholar 

  3. Ventura RA, Martin-Subero JI, Jones M, McParland J, Gesk S, Mason DY, et al. FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. J Mol Diagn. 2006;8(2):141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15(5):279–86.

    Article  CAS  PubMed  Google Scholar 

  5. Cavazzini F, Ciccone M, Negrini M, Rigolin GM, Cuneo A. Clinicobiologic importance of cytogenetic lesions in chronic lymphocytic leukemia. Expert Rev Hematol. 2009;2(3):305–14.

    Article  CAS  PubMed  Google Scholar 

  6. Sreekantaiah C. FISH panels for hematologic malignancies. Cytogenet Genome Res. 2007;118(2–4):284–96.

    Article  CAS  PubMed  Google Scholar 

  7. Stewart AK, Bergsagel PL, Greipp PR, Dispenzieri A, Gertz MA, Hayman SR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21(3):529–34.

    Article  CAS  PubMed  Google Scholar 

  8. AlHashmi H, Al-Dayel A, Soliman D, Al-Sayegh M, Abduljalil O. Hyperdiploidy is a positive prognostic factor for progression-free survival in multiple myeloma with high and intermediate risk cytogenetics. Health Sci J. 2018;12(5):590.

    Article  Google Scholar 

  9. Rajkumar SV. Multiple myeloma: staging and prognostic studies; February 15, 2019. Available from: https://www.uptodate.com/contents/multiple-myeloma-staging-and-prognostic-studies.

  10. Zhang Y, Le Beau MM. Cytogenetics and molecular genetics of myelodysplastic syndromes. Available from: https://www.uptodate.com/contents/cytogenetics-and-molecular-genetics-of-myelodysplastic-syndromes.

  11. Schiffer CA, Gurbuxani S. Clinical manifestations, pathologic features, and diagnosis of acute myeloid leukemia. April, 2019. Available from: https://www.uptodate.com/contents/clinical-manifestations-pathologic-features-and-diagnosis-of-acute-myeloid-leukemia.

  12. Avet-Loiseau H. Fish analysis at diagnosis in acute lymphoblastic leukemia. Leuk Lymphoma. 1999;33(5–6):441–9.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison CJ. The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev. 2001;15(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Le Beau MM. Cytogenetics and molecular genetics in acute lymphoblastic leukemia. Available from: https://www.uptodate.com/contents/cytogenetics-and-molecular-genetics-in-acute-lymphoblastic-leukemia.

  15. Dewald GW, Wyatt WA, Juneau AL, Carlson RO, Zinsmeister AR, Jalal SM, et al. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood. 1998;91(9):3357–65.

    Article  CAS  PubMed  Google Scholar 

  16. Wolff DJ, Bagg A, Cooley LD, Dewald GW, Hirsch BA, Jacky PB, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smoley SA, Brockman SR, Paternoster SF, Meyer RG, Dewald GW. A novel tricolor, dual-fusion fluorescence in situ hybridization method to detect BCR/ABL fusion in cells with t(9;22)(q34;q11.2) associated with deletion of DNA on the derivative chromosome 9 in chronic myelocytic leukemia. Cancer Genet Cytogenet. 2004;148(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J, Reid A, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood. 2000;95(3):738–43.

    Article  CAS  PubMed  Google Scholar 

  19. Niitsu N, Okamoto M, Nakamura N, Nakamine H, Aoki S, Hirano M, et al. Prognostic impact of chromosomal alteration of 3q27 on nodal B-cell lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 329 consecutive patients. Leuk Res. 2007;31(9):1191–7.

    Article  CAS  PubMed  Google Scholar 

  20. Espinet B, Bellosillo B, Gregori E, Escurriol V, Salido M, Florensca L, et al. Fish is the best method to detect BCL2/IgH translocation in follicular lymphoma at diagnosis. A comparative study with conventional cytogenetics, Fish and PCR (Biomed-2 primers) techniques [American Society of Hematology abstract #1377]. Blood. 2004;104(11):1377.

    Article  Google Scholar 

  21. Kipp BR, Tanasescu M, Else TA, Bryant SC, Karnes RJ, Sebo TJ, et al. Quantitative fluorescence in situ hybridization and its ability to predict bladder cancer recurrence and progression to muscle-invasive bladder cancer. J Mol Diagn. 2009;11(2):148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Halling AC, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164(5):1768–75.

    Article  CAS  PubMed  Google Scholar 

  23. Halling KC. Vysis UroVysion for the detection of urothelial carcinoma. Expert Rev Mol Diagn. 2003;3(4):507–19.

    Article  PubMed  Google Scholar 

  24. Levy MJ, Clain JE, Clayton A, Halling KC, Kipp BR, Rajan E, et al. Preliminary experience comparing routine cytology results with the composite results of digital image analysis and fluorescence in situ hybridization in patients undergoing EUS-guided FNA. Gastrointest Endosc. 2007;66(3):483–90.

    Article  PubMed  Google Scholar 

  25. Barr Fritcher EG, Kipp BR, Slezak JM, Moreno-Luna LE, Gores GJ, Levy MJ, et al. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy. Am J Clin Pathol. 2007;128(2):272–9.

    Article  PubMed  Google Scholar 

  26. Fritcher EG, Kipp BR, Halling KC, Oberg TN, Bryant SC, Tarrell RF, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures. Gastroenterology. 2009;136(7):2180–6.

    Article  PubMed  Google Scholar 

  27. Smoczynski M, Jablonska A, Matyskiel A, Lakomy J, Dubowik M, Marek I, et al. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures. Gastrointest Endosc. 2012;75(1):65–73.

    Article  PubMed  Google Scholar 

  28. Singhi AD, Slivka A. Evaluation of indeterminate biliary strictures: is it time to FISH or cut bait? Gastrointest Endosc. 2016;83(6):1236–8.

    Article  PubMed  Google Scholar 

  29. Dudley JC, Zheng Z, McDonald T, Le LP, Dias-Santagata D, Borger D, et al. Next-generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J Mol Diagn. 2016;18(1):124–30.

    Article  CAS  PubMed  Google Scholar 

  30. Halling KC, Rickman OB, Kipp BR, Harwood AR, Doerr CH, Jett JR. A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest. 2006;130(3):694–701.

    Article  PubMed  Google Scholar 

  31. Yoshida A, Ushiku T, Motoi T, Shibata T, Beppu Y, Fukayama M, et al. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol. 2010;23(9):1279–88.

    Article  CAS  PubMed  Google Scholar 

  32. Duhamel LA, Ye H, Halai D, Idowu BD, Presneau N, Tirabosco R, et al. Frequency of mouse double minute 2 (MDM2) and mouse double minute 4 (MDM4) amplification in parosteal and conventional osteosarcoma subtypes. Histopathology. 2012;60(2):357–9.

    Article  PubMed  Google Scholar 

  33. Anderson J, Gordon T, McManus A, Mapp T, Gould S, Kelsey A, et al. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer. 2001;85(6):831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mehra S, de la Roza G, Tull J, Shrimpton A, Valente A, Zhang S. Detection of FOXO1 (FKHR) gene break-apart by fluorescence in situ hybridization in formalin-fixed, paraffin-embedded alveolar rhabdomyosarcomas and its clinicopathologic correlation. Diagn Mol Pathol. 2008;17(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  35. Tanas MR, Goldblum JR. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16(6):383–91.

    Article  CAS  PubMed  Google Scholar 

  36. Sukov WR, Franco MF, Erickson-Johnson M, Chou MM, Unni KK, Wenger DE, et al. Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of “myositis ossificans-like lesions” are the early phases in the formation of soft-tissue aneurysmal bone cyst. Skelet Radiol. 2008;37(4):321–7.

    Article  Google Scholar 

  37. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Investig. 2011;91(10):1427–33.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta R, Cooper WA, Selinger C, Mahar A, Anderson L, Buckland ME, et al. Fluorescent in situ hybridization in surgical pathology practice. Adv Anat Pathol. 2018;25(4):223–37.

    Article  PubMed  Google Scholar 

  39. Selinger C, Cooper W, Lum T, McNeil C, Morey A, Waring P, et al. Equivocal ALK fluorescence in-situ hybridization (FISH) cases may benefit from ancillary ALK FISH probe testing. Histopathology. 2015;67(5):654–63.

    Article  PubMed  Google Scholar 

  40. Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174(2):661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camidge DR, Kono SA, Flacco A, Tan AC, Doebele RC, Zhou Q, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010;16(22):5581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thunnissen E, Bubendorf L, Dietel M, Elmberger G, Kerr K, Lopez-Rios F, et al. EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations. Virchows Arch. 2012;461(3):245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bubendorf L, Buttner R, Al-Dayel F, Dietel M, Elmberger G, Kerr K, et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016;469(5):489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sholl LM, Sun H, Butaney M, Zhang C, Lee C, Janne PA, et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.

    Article  PubMed  Google Scholar 

  48. Su D, Zhang D, Chen K, Lu J, Wu J, Cao X, et al. High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods. J Exp Clin Cancer Res. 2017;36(1):121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rogers TM, Arnau GM, Ryland GL, Huang S, Lira ME, Emmanuel Y, et al. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer. Sci Rep. 2017;7:42259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017;41(11):1547–51.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shan L, Lian F, Guo L, Qiu T, Ling Y, Ying J, et al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS One. 2015;10(3):e0120422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.

    Article  CAS  PubMed  Google Scholar 

  54. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66(20):9852–61.

    Article  CAS  PubMed  Google Scholar 

  55. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–50.

    Article  PubMed  CAS  Google Scholar 

  56. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  57. Hu N, Richards R, Jensen R. Role of chromosomal 1p/19q co-deletion on the prognosis of oligodendrogliomas: a systematic review and meta-analysis. Interdiscip Neurosurg. 2016;5:58–63.

    Article  Google Scholar 

  58. Smith JS, Perry A, Borell TJ, Lee HK, O'Fallon J, Hosek SM, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 2000;18(3):636–45.

    Article  CAS  PubMed  Google Scholar 

  59. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  60. Cornejo KM, Kandil D, Khan A, Cosar EF. Theranostic and molecular classification of breast cancer. Arch Pathol Lab Med. 2014;138(1):44–56.

    Article  PubMed  Google Scholar 

  61. Ruschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25(5):637–50.

    Article  PubMed  CAS  Google Scholar 

  62. Matthiesen SH, Hansen CM. Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One. 2012;7(7):e40675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. LeGallo RD, Stelow EB, Ramirez NC, Atkins KA. Diagnosis of hydatidiform moles using p57 immunohistochemistry and HER2 fluorescent in situ hybridization. Am J Clin Pathol. 2008;129(5):749–55.

    Article  PubMed  Google Scholar 

  64. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. The her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.

    Article  CAS  PubMed  Google Scholar 

  65. Yaziji H, Goldstein LC, Barry TS, Werling R, Hwang H, Ellis GK, et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA. 2004;291(16):1972–7.

    Article  CAS  PubMed  Google Scholar 

  66. Varshney D, Zhou YY, Geller SA, Alsabeh R. Determination of HER-2 status and chromosome 17 polysomy in breast carcinomas comparing HercepTest and PathVysion FISH assay. Am J Clin Pathol. 2004;121(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lal P, Salazar PA, Ladanyi M, Chen B. Impact of polysomy 17 on HER-2/neu immunohistochemistry in breast carcinomas without HER-2/neu gene amplification. J Mol Diagn. 2003;5(3):155–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gruver AM, Peerwani Z, R.R. T. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma. J Clin Pathol. 2010;63(3):210–9.

    Article  PubMed  Google Scholar 

  69. Arnould L, Roger P, Macgrogan G, Chenard MP, Balaton A, Beauclair S, et al. Accuracy of HER2 status determination on breast core-needle biopsies (immunohistochemistry, FISH, CISH and SISH vs FISH). Mod Pathol. 2012;25(5):675–82.

    Article  PubMed  Google Scholar 

  70. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    Article  PubMed  Google Scholar 

  71. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. Arch Pathol Lab Med. 2018;142(11):1364–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Special thanks to Jenny Pettengill, CT (ASCP), Cytotechnologist at Mayo Clinic, for providing UroVysion pictures and neogenomics for providing some of the FISH pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Geisinger Clinic

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, H., Ding, Y., Quinones, W., Zelonis, M.K., Snyder, D. (2022). Application of Fluorescent In Situ Hybridization (FISH) in Surgical and Cytologic Specimens (Solid Tumors, Hematopoietic Tumors, Urine, Bile Duct Brushing, and Bronchoscopy). In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics