Skip to main content

Pleuropulmonary and Mediastinal Neoplasms

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

The accurate diagnosis and subclassification of pleuropulmonary and mediastinal neoplasms require recognition of morphologic features in correlation with diagnostic immunohistochemistry (IHC). Nowadays, accurate subclassification of non-small cell lung carcinoma (NSCLC) has become mandatory for selecting appropriate molecular studies and guiding treatment. This chapter is designed to serve as an easy and quick reference for practicing pathologists intending to solve thoracic diagnostic problems and achieve these goals. It contains 58 frequently encountered immunohistochemical questions with answers addressed with tables, concise notes, and representative pictures in the diagnosis of common and uncommon pleuropulmonary and mediastinal tumors. The questions and selected frequently used antibodies or antibody panels come from a review of published literature, books, and book chapters incorporated with authors’ own practicing experience, which reflect up-to-date information in practicing immunohistochemistry in the field. Many of the antibodies have been tested, evaluated, and verified in authors’ institution on tissue microarray and tissue sections. In light of recent progress in diagnosing and treating non-small cell lung carcinomas, the most useful diagnostic antibody panels have been recommended in the chapter to enhance the possibility of distinguishing adenocarcinoma (ADC) from squamous cell carcinoma (SCC) on small biopsies and cytologic specimens and conserving tissue for molecular testing. In addition, immunophenotypes of various cell types of normal lung tissue have been described.

The following apply to all tables: “+” usually greater than 70% of cases are positive; “-” less than 5% of cases are positive; “+ or –” usually more than 50% of cases are positive; “− or +” less than 50% of cases are positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang K, Deng H, Cagle P. Pleuropulmonary and mediastinal neoplasms. In: Lin F, Prichard J, Liu H, Wilkerson M, Schuerch C, editors. Handbook of practical immunohistochemistry – frequently asked questions. 2nd ed. New York: Springer; 2015. p. 313–41.

    Google Scholar 

  2. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chu PG, Weiss LM. Modern immunohistochemistry. 2nd ed. New York: Cambridge University Press; 2014.

    Google Scholar 

  4. Dabbs DJ. Diagnostic immunohistochemistry: theranostic and genomic applications. 5th ed. Philadelphia: Churchill Livingstone Elsevier; 2018.

    Google Scholar 

  5. Taylor C, Cote R. Immunomicroscopy: a diagnostic tool for the surgical pathologist. Major problems in pathology. 3rd ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  6. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    Article  PubMed  Google Scholar 

  7. Woo JS, Reddy OL, Koo M, Xiong Y, Li F, Xu H. Application of immunohistochemistry in the diagnosis of pulmonary and pleural neoplasms. Arch Pathol Lab Med. 2017;141(9):1195–213.

    Article  PubMed  Google Scholar 

  8. Zhang K, Deng H, Cagle P. Utility of immunohistochemistry in the diagnosis of pleuropulmonary and mediastinal cancers: a review and update. Arch Pathol Lab Med. 2014;138(12):1611–28.

    Article  PubMed  Google Scholar 

  9. Nakamura N, Miyagi E, Murata S, Kawaoi A, Katoh R. Expression of thyroid transcription factor-1 in normal and neoplastic lung tissues. Mod Pathol. 2002;15(10):1058–67.

    Article  PubMed  Google Scholar 

  10. Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma. Arch Pathol Lab Med. 2012;136(2):163–71.

    Article  PubMed  Google Scholar 

  11. Whithaus K, Fukuoka J, Prihoda TJ, Jagirdar J. Evaluation of napsin A, cytokeratin 5/6, p63, and thyroid transcription factor 1 in adenocarcinoma versus squamous cell carcinoma of the lung. Arch Pathol Lab Med. 2012;136(2):155–62.

    Article  PubMed  Google Scholar 

  12. Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35(1):15–25.

    Article  PubMed  Google Scholar 

  13. Brunnström H, Johansson L, Jirström K, Jönsson M, Jönsson P, Planck M. Immunohistochemistry in the differential diagnostics of primary lung cancer: an investigation within the Southern Swedish Lung Cancer Study. Am J Clin Pathol. 2013;140(1):37–46.

    Article  PubMed  Google Scholar 

  14. Kadivar M, Boozart B. Applications and limitations of immunohistochemical expression of “Napsin-A” in distinguishing lung adenocarcinoma from adenocarcinomas of other organs. Appl Immunohistochem Mol Morphol. 2013;21(3):191–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ordóñez NG. A word of caution regarding napsin A expression in squamous cell carcinomas of the lung. Am J Surg Pathol. 2012;36(3):396–401.

    Article  PubMed  Google Scholar 

  16. Siami K, McCluggage WG, Ordonez N, Euscher ED, Malpica A, Sneige N, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2007;31(11):1759–63.

    Article  PubMed  Google Scholar 

  17. Bishop JA, Teruya-Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N. p40 (ΔNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol. 2012;25(3):405–16.

    Article  CAS  PubMed  Google Scholar 

  18. Nonaka D. A study of ΔNp63 expression in lung non-small cell carcinoma. Am J Surg Pathol. 2012;36(6):895–9.

    Article  PubMed  Google Scholar 

  19. Tacha D, Bremer R, Haas T, Qi W. An immunohistochemical analysis of a newly developed, mouse monoclonal p40 (BC28) antibody in lung, bladder, skin, breast, prostate, and head and neck cancers. Arch Pathol Lab Med. 2014;138(10):1358–64.

    Article  PubMed  Google Scholar 

  20. Agackiran Y, Ozcan A, Akyurek N, Memis L, Findik G, Kaya S. Desmoglein-3 and napsin A double stain, a useful immunohistochemical marker for differentiation of lung squamous cell carcinoma and adenocarcinoma from other subtypes. Appl Immunohistochem Mol Morphol. 2012;20(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  21. Tacha D, Yu C, Bremer R, Qi W, Haas T. A 6-antibody panel for the classification of lung adenocarcinoma versus squamous cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(3):201–7.

    Article  CAS  PubMed  Google Scholar 

  22. Terry J, Leung S, Laskin J, Leslie KO, Gown AM, Ionescu DN. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol. 2010;34(12):1805–11.

    Article  PubMed  Google Scholar 

  23. Bishop JA, Ogawa T, Chang X, Illei PB, Gabrielson E, Pai SI, et al. HPV analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma. Am J Surg Pathol. 2012;36(1):142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lau SK, Chu PG, Weiss LM. Immunohistochemical expression of estrogen receptor in pulmonary adenocarcinoma. Appl Immunohistochem Mol Morphol. 2006;14(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  25. Uzaslan E, Stuempel T, Ebsen M, Freudenberg N, Nakamura S, Costabel U, et al. Surfactant protein A detection in primary pulmonary adenocarcinoma without bronchioloalveolar pattern. Respiration. 2005;72(3):249–53.

    Article  CAS  PubMed  Google Scholar 

  26. Kaufmann O, Dietel M. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Histopathology. 2000;36(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  27. Sugano M, Nagasaka T, Sasaki E, Murakami Y, Hosoda W, Hida T, et al. HNF4α as a marker for invasive mucinous adenocarcinoma of the lung. Am J Surg Pathol. 2013;37(2):211–8.

    Article  PubMed  Google Scholar 

  28. Zhang K. The absence of NapsinA expression in invasive mucinous adenocarcinoma and adenocarcinoma in situ (AIS, mucinous type). Abstract presented at the Biennial Meeting Pulmonary Pathology Society; June 2013; Grenoble.

    Google Scholar 

  29. Wu J, Chu PG, Jiang Z, Lau SK. Napsin A expression in primary mucin-producing adenocarcinoma of the lung: an immunohistochemical study. Am J Clin Pathol. 2013;139(2):160–6.

    Article  PubMed  Google Scholar 

  30. Popper HH. Cons: the confusing mucinous adenocarcinoma classification. Transl Lung Cancer Res. 2017;6(2):234–40.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dacic S. Pros: the present classification of mucinous adenocarcinomas of the lung. Transl Lung Cancer Res. 2017;6(2):230–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mute M, Inamura K, Ninomlya H, Okumura S, Kitagawa M, Ishikawa Y. Pulmonary adenocarcinoma with mucin production and possible subtyping based on driver mutation and transcription factors. J Med Dent Sci. 2019;66:1–12.

    Google Scholar 

  33. Castro CY, Moran CA, Flieder DG, Suster S. Primary signet ring cell adenocarcinomas of the lung: a clinicopathological study of 15 cases. Histopathology. 2001;39(4):397–401.

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi H, Kitamura H, Nakatani Y, Inayama Y, Ito T, Kitamura H. Primary signet-ring cell carcinoma of the lung: histochemical and immunohistochemical characterization. Hum Pathol. 1999;30(4):378–83.

    Article  CAS  PubMed  Google Scholar 

  35. Barbareschi M, Cantaloni C, Del Vescovo V, Cavazza A, Monica V, Carella R, et al. Heterogeneity of large cell carcinoma of the lung. Am J Clin Pathol. 2011;136(5):773–82.

    Article  PubMed  Google Scholar 

  36. Pardo J, Martinez-Penuela AM, Sola JJ, Panizo A, Gúrpide A, Martinez-Peñuela JM, et al. Large cell carcinoma of the lung: an endangered species? Appl Immunohistochem Mol Morphol. 2009;17(5):383–92.

    Article  PubMed  Google Scholar 

  37. Rekhtman N, Tafe LJ, Chaft JE, Wang L, Arcila ME, Colanta A, et al. Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol. 2013;26(4):511–22.

    Article  CAS  PubMed  Google Scholar 

  38. Wang LC, Wang L, Kwauk S, Woo JA, Wu LQ, Zhu H, et al. Analysis on the clinical features of 22 basaloid squamous cell carcinoma of the lung. J Cardiothorac Surg. 2011;6:10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim DJ, Kim KD, Shin DH, Ro JY, Chung KY. Basaloid carcinoma of the lung: a really dismal histologic variant? Ann Thorac Surg. 2003;76(6):1833–7.

    Article  PubMed  Google Scholar 

  40. Han AJ, Xiong M, Gu YY, Lin SX, Xiong M. Lymphoepithelioma-like carcinoma of the lung with a better prognosis. A clinicopathologic study of 32 cases. Am J Clin Pathol. 2001;115(6):841–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hayashi T, Haba R, Tanizawa J, Katsuki N, Kadota K, Miyai Y, et al. Cytopathologic features and differential diagnostic considerations of primary lymphoepithelioma-like carcinoma of the lung. Diagn Cytopathol. 2012;40:820–5.

    Article  PubMed  Google Scholar 

  42. Mukhopadhyay S, Dermawan JK, Lanigan CP, Farver CF. Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: an immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod Pathol. 2019;32:100–9.

    Article  CAS  PubMed  Google Scholar 

  43. Rooper LM, Sharma R, Li QK, Illei PB, Westra WH. INSM1 demonstrates superior performance to the individual and combined use of synaptophysin, chromogranin and CD56 for diagnosing neuroendocrine tumors of the thoracic cavity. Am J Surg Pathol. 2017;41:1561–9.

    Article  PubMed  Google Scholar 

  44. Altree-Tacha D, Tyrrell J, Li F. mASH1 is highly specific for neuroendocrine carcinomas an immunohistochemical evaluation on normal and various neoplastic tissues. Arch Pathol Lab Med. 2017;141(2):288–92.

    Article  PubMed  Google Scholar 

  45. Beasley MB, Brambila E, Chirieac LR, Austin JHM, Devesa SS, Hasleton P, et al. Carcinoid tumour. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG, editors. WHO classification of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2015. p. 73–7.

    Google Scholar 

  46. Folpe AL, Gown AM, Lamps LW, Garcia R, Dail DH, Zarbo RJ, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol. 1999;12(1):5–8.

    CAS  PubMed  Google Scholar 

  47. Ordóñez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol. 2000;24(9):1217–23.

    Article  PubMed  Google Scholar 

  48. Oliveira AM, Tazelaar HD, Myers JL, Erickson LA, Lloyd RV. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol. 2001;25(6):815–9.

    Article  CAS  PubMed  Google Scholar 

  49. Du EZ, Goldstraw P, Zacharias J, Tiffet O, Craig PJ, Nicholson AG, et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol. 2004;35(7):825–31.

    Article  CAS  PubMed  Google Scholar 

  50. Hiroshima K, Iyoda A, Shida T, Shibuya K, Iizasa T, Kishi H, et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol. 2006;19(10):1358–68.

    Article  CAS  PubMed  Google Scholar 

  51. Agoff SN, Lamps LW, Philip AT, Amin MB, Schmidt RA, True LD, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000;13(3):238–42.

    Article  CAS  PubMed  Google Scholar 

  52. Sica G, Wagner PL, Altorki N, Port J, Lee PC, Vazquez MF, et al. Immunohistochemical expression of estrogen and progesterone receptors in primary pulmonary neuroendocrine tumors. Arch Pathol Lab Med. 2008;132(12):1889–95.

    Article  PubMed  Google Scholar 

  53. Alijo Serrano F, Sánchez-Mora N, Angel Arranz J, Hernández C, Alvarez-Fernández E. Large cell and small cell neuroendocrine bladder carcinoma: immunohistochemical and outcome study in a single institution. Am J Clin Pathol. 2007;128(5):733–9.

    Article  PubMed  Google Scholar 

  54. Yao JL, Madeb R, Bourne P, Lei J, Yang X, Tickoo S, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol. 2006;30(6):705–12.

    Article  PubMed  Google Scholar 

  55. Lin X, Saad RS, Luckasevic TM, Silverman JF, Liu Y. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol. 2007;15(4):407–14.

    Article  CAS  PubMed  Google Scholar 

  56. Saqi A, Alexis D, Remotti F, Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol. 2005;123(3):394–404.

    Article  PubMed  Google Scholar 

  57. Barbareschi M, Roldo C, Zamboni G, Capelli P, Cavazza A, Macri E, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol. 2004;28(9):1169–76.

    Article  PubMed  Google Scholar 

  58. Ionescu DN, Treaba D, Gilks CB, Leung S, Renouf D, Laskin J, et al. Nonsmall cell lung carcinoma with neuroendocrine differentiation–an entity of no clinical or prognostic significance. Am J Surg Pathol. 2007;31(1):26–32.

    Article  PubMed  Google Scholar 

  59. Zhang H, Liu J, Cagle PT, Allen TC, Laga AC, Zander DS. Distinction of pulmonary small cell carcinoma from poorly differentiated squamous cell carcinoma: an immunohistochemical approach. Mod Pathol. 2005;18(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  60. Masai K, Tsuta K, Kawago M, Tatsumori T, Kinno T, Taniyama T, et al. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol. 2013;21(2):292–7.

    Article  CAS  PubMed  Google Scholar 

  61. Rossi G, Cavazza A, Sturm N, Migaldi M, Facciolongo N, Longo L, et al. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol. 2003;27(3):311–24.

    Article  PubMed  Google Scholar 

  62. Koss MN, Hochholzer L, O’Leary T. Pulmonary blastomas. Cancer. 1991;67(9):2368–81.

    Article  CAS  PubMed  Google Scholar 

  63. Yousem SA, Wick MR, Randhawa P, Manivel JC. Pulmonary blastoma. An immunohistochemical analysis with comparison with fetal lung in its pseudoglandular stage. Am J Clin Pathol. 1990;93(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  64. Sholl LM, Hornick JL, Pinkus JL, Pinkus GS, Padera RF. Immunohistochemical analysis of langerin in langerhans cell histiocytosis and pulmonary inflammatory and infectious diseases. Am J Surg Pathol. 2007;31(6):947–52.

    Article  PubMed  Google Scholar 

  65. Berger U, Khaghani A, Pomerance A, Yacoub MH, Coombes RC. Pulmonary lymphangioleiomyomatosis and steroid receptors. An immunocytochemical study. Am J Clin Pathol. 1990;93(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  66. Colley MH, Geppert E, Franklin WA. Immunohistochemical detection of steroid receptors in a case of pulmonary lymphangioleiomyomatosis. Am J Surg Pathol. 1989;13(9):803–7.

    Article  CAS  PubMed  Google Scholar 

  67. Barbareschi M, Ferrero S, Aldovini D, Leonardi E, Colombetti V, Carboni N, et al. Inflammatory pseudotumour of the lung. Immunohistochemical analysis on four new cases. Histol Histopathol. 1990;5(2):205–11.

    CAS  PubMed  Google Scholar 

  68. Cessna MH, Zhou H, Sanger WG, Perkins SL, Tripp S, Pickering D, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15(9):931–8.

    Article  PubMed  Google Scholar 

  69. Chan JK, Cheuk W, Shimizu M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol. 2001;25(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  70. Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59(12):2776–80.

    CAS  PubMed  Google Scholar 

  71. Coffin CM, Patel A, Perkins S, Elenitoba-Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14(6):569–76.

    Article  CAS  PubMed  Google Scholar 

  72. Cook JR, Dehner LP, Collins MH, Ma Z, Morris SW, Coffin CM, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25(11):1364–71.

    Article  CAS  PubMed  Google Scholar 

  73. Devouassoux-Shisheboran M, Hayashi T, Linnoila RI, Koss MN, Travis WD. A clinicopathologic study of 100 cases of pulmonary sclerosing hemangioma with immunohistochemical studies: TTF-1 is expressed in both round and surface cells, suggesting an origin from primitive respiratory epithelium. Am J Surg Pathol. 2000;24(7):906–16.

    Article  CAS  PubMed  Google Scholar 

  74. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    Article  CAS  PubMed  Google Scholar 

  75. Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer. 2002;38(6):758–63.

    Article  CAS  PubMed  Google Scholar 

  76. Srivastava A, Hornick JL. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol. 2009;33(4):626–32.

    Article  PubMed  Google Scholar 

  77. Ordonez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol. 2000;24(9):1217–23.

    Article  CAS  PubMed  Google Scholar 

  78. Ralston J, Chiriboga L, Nonaka D. MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol. 2008;21(11):1357–62.

    Article  CAS  PubMed  Google Scholar 

  79. Byrd-Gloster AL, Khoor A, Glass LF, Messina JL, Whitsett JA, Livingston SK, et al. Differential expression of thyroid transcription factor 1 in small cell lung carcinoma and Merkel cell tumor. Hum Pathol. 2000;31(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  80. Busam KJ, Jungbluth AA, Rekthman N, Coit D, Pulitzer M, Bini J, et al. Merkel cell polyomavirus expression in merkel cell carcinomas and its absence in combined tumors and pulmonary neuroendocrine carcinomas. Am J Surg Pathol. 2009;33(9):1378–85.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mochizuki T, Ishii G, Nagai K, Yoshida J, Nishimura M, Mizuno T, et al. Pleomorphic carcinoma of the lung; clinicopathologic characteristics of 70 cases. Am J Surg Pathol. 2008;32(11):1727–35.

    Article  PubMed  Google Scholar 

  82. Pelosi G, Sonzogni A, De Pas T, Galetta D, Veronesi G, Spaggiari L, Manzotti M, et al. Review article: pulmonary sarcomatoid carcinomas: a practical overview. Int J Surg Pathol. 2010;18(2):103–20.

    Article  PubMed  Google Scholar 

  83. Travis WD. Sarcomatoid neoplasms of the lung and pleura. Arch Pathol Lab Med. 2010;134(11):1645–58.

    Article  PubMed  Google Scholar 

  84. Kaira K, Horie Y, Ayabe E, Murakami H, Takahashi T, Tsuya A, et al. Pulmonary pleomorphic carcinoma: a clinicopathologic study including EGFR mutation analysis. J Thorac Oncol. 2010;5(4):460–5.

    Article  PubMed  Google Scholar 

  85. Zhu S, Miettinen M, Lin G. Soft tissue and bone tumors. In: Lin F, Prichard J, Liu H, Wilkerson M, Schuerch C, editors. Handbook of practical immunohistochemistry – frequently asked questions. New York: Springer; 2015. p. 557–90.

    Google Scholar 

  86. Miettinen M, Fetsch JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum Pathol. 2000;31(9):1062–7.

    Article  CAS  PubMed  Google Scholar 

  87. Yousem SA. Immunohistochemical and molecular characterization of clear cell carcinoma of the lung. Hum Pathol. 2013;44(11):2467–74.

    Article  CAS  PubMed  Google Scholar 

  88. Andrion A, Mazzucco G, Gugliotta P, Monga G. Benign clear cell (sugar) tumor of the lung. A light microscopic, histochemical, and ultrastructural study with a review of the literature. Cancer. 1985;56(11):2657–63.

    Article  CAS  PubMed  Google Scholar 

  89. Gaffey MJ, Mills SE, Askin FB, Ross GW, Sale GE, Kulander BG, et al. Clear cell tumor of the lung. A clinicopathologic, immunohistochemical, and ultrastructural study of eight cases. Am J Surg Pathol. 1990;14(3):248–59.

    Article  CAS  PubMed  Google Scholar 

  90. Gaffey MJ, Mills SE, Zarbo RJ, Weiss LM, Gown AM. Clear cell tumor of the lung. Immunohistochemical and ultrastructural evidence of melanogenesis. Am J Surg Pathol. 1991;15(7):644–53.

    Article  CAS  PubMed  Google Scholar 

  91. Gal AA, Koss MN, Hochholzer L, Chejfec G. An immunohistochemical study of benign clear cell (‘sugar’) tumor of the lung. Arch Pathol Lab Med. 1991;115(10):1034–8.

    CAS  PubMed  Google Scholar 

  92. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.

    Article  PubMed  Google Scholar 

  93. Ozcan A, Shen SS, Hamilton C, Anjana K, Coffey D, Krishnan B, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol. 2011;24(6):751–64.

    Article  CAS  PubMed  Google Scholar 

  94. Tacha D, Zhou D, Cheng L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2011;19(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  95. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2017.

    Google Scholar 

  96. Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M, et al. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol. 2005;29(11):1411–21.

    Article  PubMed  Google Scholar 

  97. Tandon B, Peterson L, Gao J, Nelson B, Ma S, Rosen S, et al. Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol. 2011;24:1433–43.

    Article  CAS  PubMed  Google Scholar 

  98. Zeng W, Fu K, Quintanilla-Fend L, Lim M, Ondrejka S, Hsi ED. Cyclin D1-negative blastoid mantle cell lymphoma identified by SOX11 expression. Am J Surg Pathol. 2012;36(2):214–9.

    Article  PubMed  Google Scholar 

  99. Pan CC, Chen PC, Tsay SH, Ho DM. Differential immunoprofiles of hepatocellular carcinoma, renal cell carcinoma, and adrenocortical carcinoma: a systemic immunohistochemical survey using tissue array technique. Appl Immunohistochem Mol Morphol. 2005;13(4):347–52.

    Article  CAS  PubMed  Google Scholar 

  100. Matoso A, Singh K, Jacob R, Greaves WO, Tavares R, Noble L, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol. 2010;18(2):142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Compérat E, Zhang F, Perrotin C, Molina T, Magdeleinat P, Marmey B, et al. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod Pathol. 2005;18(10):1371–6.

    Article  PubMed  CAS  Google Scholar 

  102. Penman D, Downie I, Roberts F. Positive immunostaining for thyroid transcription factor-1 in primary and metastatic colonic adenocarcinoma: a note of caution. J Clin Pathol. 2006;59(6):663–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ye J, Hameed O, Findeis-Hosey JJ, Fan L, Li F, McMahon LA, et al. Diagnostic utility of PAX8, TTF-1 and napsin A for discriminating metastatic carcinoma from primary adenocarcinoma of the lung. Biotech Histochem. 2012;87(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  104. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27(3):303–10.

    Article  PubMed  Google Scholar 

  105. Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol. 2000;8(3):189–94.

    CAS  PubMed  Google Scholar 

  106. Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011;35(7):937–48.

    Article  PubMed  Google Scholar 

  107. Yasunaga M, Ohishi Y, Oda Y, Misumi M, Iwasa A, Kurihara S, et al. Immunohistochemical characterization of mullerian mucinous borderline tumors: possible histogenetic link with serous borderline tumors and low-grade endometrioid tumors. Hum Pathol. 2009;40(7):965–74.

    Article  CAS  PubMed  Google Scholar 

  108. Wright K, Wilson P, Morland S, Campbell I, Walsh M, Hurst T, et al. Beta-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int J Cancer. 1999;82(5):625–9.

    Article  CAS  PubMed  Google Scholar 

  109. Husain AN, Colby TV, Ordonez NG, Allen TC, Attanoos RL, Beasley MB, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142:89–108.

    Article  CAS  PubMed  Google Scholar 

  110. Hasteh F, Lin GY, Weidner N, Michael CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118(2):90–6.

    Article  PubMed  Google Scholar 

  111. King J, Thatcher N, Pickering C, Hasleton P. Sensitivity and specificity of immunohistochemical antibodies used to distinguish between benign and malignant pleural disease: a systematic review of published reports. Histopathology. 2006;49(6):561–8.

    Article  CAS  PubMed  Google Scholar 

  112. Saad RS, Cho P, Liu YL, Silverman JF. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma: a comparative study. Diagn Cytopathol. 2005;32(3):156–9.

    Article  PubMed  Google Scholar 

  113. Moretti L, García A, Nieto S, Elsner B, Avagnina A, Denninghoff V. Malignant mesothelioma vs. reactive mesothelial proliferations: immunohistochemical profile. Br J Med Res. 2014;4(1):95–103.

    Article  Google Scholar 

  114. Kato Y, Tsuta K, Seki K, Maeshima AM, Watanabe S, Suzuki K, et al. Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol. 2007;20:215–20.

    Article  CAS  PubMed  Google Scholar 

  115. Ikeda K, Tate G, Suzuki T, Kitamura T, Mitsuya T. Diagnostic usefulness of EMA, IMP3, and GLUT-1 for the immunocytochemical distinction of malignant cells from reactive mesothelial cells in effusion cytology using cytospin preparations. Diagn Cytopathol. 2011;39:395–401.

    Article  PubMed  Google Scholar 

  116. Lee AF, Gown AM, Churg A. IMP3 and GLUT-1 immunohistochemistry for distinguishing benign from malignant mesothelial proliferations. Am J Surg Pathol. 2013;37(3):421–6.

    Article  PubMed  Google Scholar 

  117. Lagana SM, Taub RN, Borczuk AC. Utility of glucose transporter 1 in the distinction of benign and malignant thoracic and abdominal mesothelial lesions. Arch Pathol Lab Med. 2012;136(7):804–9.

    Article  PubMed  Google Scholar 

  118. Shi M, Fraire AE, Chu P, Cornejo K, Woda BA, Dresser K, et al. Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol. 2011;35(6):878–82.

    Article  PubMed  Google Scholar 

  119. Sato A, Torii I, Okamura Y, Yamamoto T, Nishigami T, Kataoka TR, et al. Immunocytochemistry of CD146 is useful to discriminate between malignant pleural mesothelioma and reactive mesothelium. Mod Pathol. 2010;23(11):1458–66.

    Article  CAS  PubMed  Google Scholar 

  120. Bidlingmaier S, He J, Wang Y, An F, Feng J, Barbone D, et al. Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res. 2009;69(4):1570–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Monaco SE, Shuai Y, Bansal M, Krasinskas AM, Dacic S. The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol. 2011;135(4):619–27.

    Article  PubMed  Google Scholar 

  122. Chiosea S, Krasinskas A, Cagle PT, Mitchell KA, Zander DS, Dacic S. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008;21(6):742–7.

    Article  CAS  PubMed  Google Scholar 

  123. Dacic S, Kothmaier H, Land S, Shuai Y, Halbwedl I, Morbini P, et al. Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas. Virchows Arch. 2008;453(6):627–35.

    Article  PubMed  Google Scholar 

  124. Takeda M, Kasai T, Enomoto Y, Takano M, Morita K, Kadota E, et al. Genomic gains and losses in malignant mesothelioma demonstrated by FISH analysis of paraffin-embedded tissues. J Clin Pathol. 2012;65(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  125. Capkova L, Koubkova L, Kodet R. Expression of carbonic anhydrase IX (CAIX) in malignant mesothelioma. An immunohistochemical and immunocytochemical study. Neoplasma. 2014;61(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  126. Chapel DB, Husain AN, Krausz T. Immunohistochemical evaluation of nuclear 5- hydroxymethylcytosine (5-hmC) accurately distinguishes malignant pleural mesothelioma from benign mesothelial proliferations. Mod Pathol. 2019;32:376–86.

    Article  CAS  PubMed  Google Scholar 

  127. Berg KB, Dacic S, Miller C, Cheung S, Churg A. Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas. Arch Pathol Lab Med. 2018;142:1549–53.

    Article  CAS  PubMed  Google Scholar 

  128. Sheffield BS, Hwang HC, Lee AF, Thompson K, Rodriguez S, Tse CH, et al. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am J Surg Pathol. 2015;39:977–82.

    Article  PubMed  Google Scholar 

  129. Hwang HC, Pyott S, Rodriguez S, Cindric A, Carr A, Michelsen C, et al. BAP1 immunohistochemistry and p16 FISH in the diagnosis of sarcomatous and desmoplastic mesotheliomas. Am J Surg Pathol. 2016;40:714–8.

    Article  PubMed  Google Scholar 

  130. Pillappa R, Maleszewski JJ, Sukov WR, Bedroske PP, Greipp PT, Boland JM, et al. Loss of BAP1 expression in atypical mesothelial proliferations helps to predict malignant mesothelioma. Am J Surg Pathol. 2018;42:256–63.

    Article  PubMed  Google Scholar 

  131. Kuraoka M, Amatya VJ, Kushitani K, Mawas AS, Miyata Y, Okada M, et al. Identification of DAB2 and intelectin-1 as novel positive immunohistochemical markers of epithelioid mesothelioma by transcriptome microarray analysis for its differentiation from pulmonary adenocarcinoma. Am J Surg Pathol. 2017;41(8):1045–52.

    Article  PubMed  Google Scholar 

  132. Amatya VJ, Kushitani K, Kai Y, Suzuki R, Miyata Y, Okada M, et al. Glypican-1 immunohistochemistry is a novel marker to differentiate epithelioid mesothelioma from lung adenocarcinoma. Mod Pathol. 2018;31:809–15.

    Article  CAS  PubMed  Google Scholar 

  133. Davidson B, Stavnes HT, Hellesylt E, Hager T, Zeppa P, Pinamonti M, et al. MMP-7 is a highly specific negative marker for benign and malignant mesothelial cells in serous effusions. Hum Pathol. 2016;47(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  134. Mawas AS, Amatya VJ, Kushitani K, Kai Y, Miyata Y, Okada MT, et al. MUC4 immunohistochemistry is useful in distinguishing epithelioid mesothelioma from adenocarcinoma and squamous cell carcinoma of the lung. Sci Rep. 2018;8:134–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Aydin H, Chute D, Yang B. Loss of p16 protein expression as a biomarker for malignant mesothelioma. Platform presentation at 58th annual Scientific Meeting American Society of Cytopathology; November 2010; Boston.

    Google Scholar 

  136. Ordóñez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  137. Ordóñez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol. 2013;44(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  138. Ordóñez NG. The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol. 2003;27(8):1031–51.

    Article  PubMed  Google Scholar 

  139. Granville LA, Younes M, Churg A, Roggli VL, Henderson DW, Cagle PT. Comparison of monoclonal versus polyclonal calretinin antibodies for immunohistochemical diagnosis of malignant mesothelioma. Appl Immunohistochem Mol Morphol. 2005;13(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  140. Ordóñez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27(11):1418–28.

    Article  PubMed  Google Scholar 

  141. Abutaily AS, Addis BJ, Roche WR. Immunohistochemistry in the distinction between malignant mesothelioma and pulmonary adenocarcinoma: a critical evaluation of new antibodies. J Clin Pathol. 2002;55(9):662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chu PG, Weiss LM. Expression of cytokeratin 5/6 in epithelial neoplasms: an immunohistochemical study of 509 cases. Mod Pathol. 2002;15(1):6–10.

    Article  PubMed  Google Scholar 

  143. Ordóñez NG. D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma. Hum Pathol. 2005;36(4):372–80.

    Article  PubMed  CAS  Google Scholar 

  144. Hinterberger M, Reineke T, Storz M, Weder W, Vogt P, Moch H. D2-40 and calretinin - a tissue microarray analysis of 341 malignant mesotheliomas with emphasis on sarcomatoid differentiation. Mod Pathol. 2007;20(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  145. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  146. Kimura N, Kimura I. Podoplanin as a marker for mesothelioma. Pathol Int. 2005;55(2):83–6.

    Article  CAS  PubMed  Google Scholar 

  147. Morgan RL, De Young BR, McGaughy VR, Niemann TH. MOC-31 aids in the differentiation between adenocarcinoma and reactive mesothelial cells. Cancer. 1999;87(6):390–4.

    Article  CAS  PubMed  Google Scholar 

  148. Comin CE, Novelli L, Boddi V, Paglierani M, Dini S. Calretinin, thrombomodulin, CEA, and CD15: a useful combination of immunohistochemical markers for differentiating pleural epithelial mesothelioma from peripheral pulmonary adenocarcinoma. Hum Pathol. 2001;32(5):529–36.

    Article  CAS  PubMed  Google Scholar 

  149. Mani H, Zander DS. Immunohistochemistry: applications to the evaluation of lung and pleural neoplasms: Part2. Chest. 2012;142(5):1324–33.

    Article  PubMed  Google Scholar 

  150. Marchevsky AM. Application of immunohistochemistry to the diagnosis of malignant mesothelioma. Arch Pathol Lab Med. 2008;132(3):397–401.

    Article  PubMed  Google Scholar 

  151. Facchetti F, Lonardi S, Gentili F, Bercich L, Falchetti M, Tardanico R, et al. Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch. 2007;451(3):669–80.

    Article  CAS  PubMed  Google Scholar 

  152. Lonardi S, Manera C, Marucci R, Santoro A, Lorenzi L, Facchetti F. Usefulness of claudin 4 in the cytological diagnosis of serosal effusions. Diagn Cytopathol. 2011;39(5):313–7.

    Article  PubMed  Google Scholar 

  153. Ordóñez NG. Value of claudin-4 immunostaining in the diagnosis of mesothelioma. Am J Clin Pathol. 2013;139(5):611–9.

    Article  PubMed  CAS  Google Scholar 

  154. Ordóñez NG. The diagnostic utility of immunohistochemistry in distinguishing between epithelioid mesotheliomas and squamous carcinomas of the lung: a comparative study. Mod Pathol. 2006;19(3):417–28.

    Article  PubMed  Google Scholar 

  155. Tatsumori T, Tsuta K, Masai K, Kinno T, Taniyama T, Yoshida A, et al. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2. Appl Immunohistochem Mol Morphol. 2014;22(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  156. Duhig EE, Kalpakos L, Yang IA, Clarke BE. Mesothelial markers in high-grade breast carcinoma. Histopathology. 2011;59(5):957–64.

    Article  PubMed  Google Scholar 

  157. Powell G, Roche H, Roche WR. Expression of calretinin by breast carcinoma and the potential for misdiagnosis of mesothelioma. Histopathology. 2011;59(5):950–6.

    Article  PubMed  Google Scholar 

  158. Sasaki E, Tsunoda N, Hatanaka Y, Mori N, Iwata H, Yatabe Y. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod Pathol. 2007;20(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  159. Striebel JM, Dacic S, Yousem SA. Gross cystic disease fluid protein-(GCDFP-15): expression in primary lung adenocarcinoma. Am J Surg Pathol. 2008;32(3):426–32.

    Article  PubMed  Google Scholar 

  160. Ordóñez NG. The diagnostic utility of immunohistochemistry in distinguishing between mesothelioma and renal cell carcinoma: a comparative study. Hum Pathol. 2004;35(6):697–710.

    Article  PubMed  CAS  Google Scholar 

  161. Gurel B, Ali TZ, Montgomery EA, Begum S, Hicks J, Goggins M, et al. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol. 2010;34(8):1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chirleac LR, Pinkus GS, Pinkus JL, Godleski J, Sugarbaker DJ. The immunohistochemical characterization of sarcomatoid malignant mesothelioma of the pleura. Am J Cancer Res. 2011;1(1):14–24.

    Google Scholar 

  163. Lucas DR, Pass HI, Madan SK, Adsay NV, Wali A, Tabaczka P, et al. Sarcomatoid mesothelioma and its histological mimics: a comparative immunohistochemical study. Histopathology. 2003;42(3):270–9.

    Article  CAS  PubMed  Google Scholar 

  164. Rdzanek M, Fresco R, Pass HI, Carbone M. Spindle cell tumors of the pleura: differential diagnosis. Semin Diagn Pathol. 2006;23(1):44–55.

    Article  PubMed  Google Scholar 

  165. Takeshima Y, Amatya VJ, Kushitani K, Kaneko M, Inai K. Value of immunohistochemistry in the differential diagnosis of pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma. Histopathology. 2009;54(6):667–76.

    Article  PubMed  Google Scholar 

  166. Amatya VJ, Kushitani K, Mawas AS, Miyata Y, Okada M, Kishimoto T, et al. MUC4, a novel immunohistochemical marker identified by gene expression profiling, differentiates pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma. Mod Pathol. 2017;30:672–81.

    Article  CAS  PubMed  Google Scholar 

  167. Rekhi B, Basak R, Desai SB, Jambhekar NA. Immunohistochemical validation of TLE1, a novel marker, for synovial sarcomas. Indian J Med Res. 2012;136(5):766–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Corson JM, Weiss LM, Banks-Schlegel SP, Pinkus GS. Keratin proteins and carcinoembryonic antigen in synovial sarcomas: an immunohistochemical study of 24 cases. Hum Pathol. 1984;15(7):615–21.

    Article  CAS  PubMed  Google Scholar 

  169. Miettinen M. Keratin subsets in spindle cell sarcomas. Keratins are widespread but synovial sarcoma contains a distinctive keratin polypeptide pattern and desmoplakins. Am J Pathol. 1991;138(2):505–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lin BT, Colby T, Gown AM, et al. Malignant vascular tumors of the serous membranes mimicking mesothelioma. A report of 14 cases. Am J Surg Pathol. 1996;20(12):1431–9.

    Article  CAS  PubMed  Google Scholar 

  171. Folpe AL, Chand EM, Goldblum JR, Weiss SW. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001;25(8):1061–6.

    Article  CAS  PubMed  Google Scholar 

  172. Yoshida A, Tsuta K, Ohno M, Yoshida M, Narita Y, Kawai A, et al. STAT6 immunohistochemistry is helpful in the diagnosis of solitary fibrous tumors. Am J Surg Pathol. 2014;38(4):552–9.

    Article  PubMed  Google Scholar 

  173. Thway K, Nicholson AG, Lawson K, Gonzalez D, Rice A, Balzer B, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol. 2011;35(11):1722–32.

    Article  PubMed  Google Scholar 

  174. Gerald WL, Ladanyi M, de Alava E, Cuatrecasas M, Kushner BH, LaQuaglia MP, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J Clin Oncol. 1998;16(9):3028–36.

    Article  CAS  PubMed  Google Scholar 

  175. Pan ZG, Zhang QY, Lu ZB, Quinto T, Rozenvald IB, Liu LT, et al. Extracavitary KSHV-associated large B-cell lymphoma, a distinct entity or a subtype of primary effusion lymphoma? Study of 9 cases and review of an additional 43 cases. Am J Surg Pathol. 2012;36(8):1129–40.

    Article  PubMed  Google Scholar 

  176. Alexanian S, Said J, Lones M, Pullarkat ST. KSHV/HHV8-negative effusion-based lymphoma, a distinct entity associated with fluid overload states. Am J Surg Pathol. 2013;37(2):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Boroumand N, Ly TL, Sonstein J, Medeiros LJ. Microscopic diffuse large B-cell lymphoma (DLBCL) occurring in pseudocysts do these tumors belong to the category of DLBCL associated with chronic inflammation? Am J Surg Pathol. 2012;36:1074–80.

    Article  PubMed  Google Scholar 

  178. Gruver AM, Huba MA, Dogan A, Hsi ED. Fibrin-associated large B-cell lymphoma part of the spectrum of cardiac lymphomas. Am J Surg Pathol. 2012;36:1527–37.

    Article  PubMed  Google Scholar 

  179. Dotto J, Pelosi G, Rosai J. Expression of p63 in thymomas and normal thymus. Am J Clin Pathol. 2007;127(3):415–20.

    Article  PubMed  Google Scholar 

  180. Wu M, Sun K, Gil J, Gan L, Burstein DE. Immunohistochemical detection of p63 and XIAP in thymic hyperplasia and thymomas. Am J Clin Pathol. 2009;131(5):689–93.

    Article  PubMed  Google Scholar 

  181. Kojika M, Ishii G, Yoshida J, Nishimura M, Hishida T, Ota SJ, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasm. Mod Pathol. 2009;22(10):1341–50.

    Article  CAS  PubMed  Google Scholar 

  182. Strobel P, Marx A, Chan JKC, Marom EM, Matsuno Y, Nicholson AG, et al. Thymic neuroendocrine tumours. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG, editors. WHO classification of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2015. p. 234–42.

    Google Scholar 

  183. Wilkerson M, Cheng L. Testis and paratesticular tissues. In: Lin F, Prichard J, Liu H, Wilkerson M, Schuerch C, editors. Handbook of practical immunohistochemistry – frequently asked questions. New York: Springer; 2015. p. 465–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Geisinger Clinic

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, H., Zhang, K. (2022). Pleuropulmonary and Mediastinal Neoplasms. In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics