Skip to main content

Durability of Earth Materials: Weathering Agents, Testing Procedures and Stabilisation Methods

  • Chapter
  • First Online:
Testing and Characterisation of Earth-based Building Materials and Elements

Abstract

This chapter reviews the potential impact of six environmental agents (water, ice, wind, fire, solar radiation and chemical attack) on the long-term stability of earth buildings together with some of the most common techniques for measuring and improving material durability. Liquid water appears the most detrimental of all environmental agents, not only because it can significantly reduce capillary cohesion inside the material but also because water can penetrate inside buildings through multiple routes, e.g. rainfall, foundation rise, ambient humidity and utilities leakage. Water can also be very damaging when it is present in solid form as the expansion of pore ice may induce cracking of the earth material. The high resistance of earth buildings to wind is instead proven by the good conditions of many historic structures in windy regions. Earth buildings also exhibit good resistance to fire as the exposure to very high temperatures may even improve material durability. Solar radiation has, in general, a beneficial effect on the stability of earth buildings as it promotes water evaporation with a consequent increase of capillary cohesion. Solar radiation may, however, have a detrimental effect if the earth is stabilised by organic binders that are sensitive to photodegradation because, in this case, it may produce material damages ranging from a simple surface discoloration to a much more serious deterioration of the intergranular bonds. Unstabilized earth is generally inert and, hence, largely unaffected by chemicals though, in some instances, the precipitation of salt crystals inside the pore water can induce material cracking. Chemical degradation can instead be severe in both stabilised earth (due to the dissolution of intergranular bonds) and steel-reinforced earth (due to the corrosion of rebars). No international standard protocol exists to measure the durability of earth materials, which is currently assessed by multiple experimental procedures depending on which environmental agent is considered. Testing standards may, however, be devised in the future by differentiating between weathering protocols, which reproduce the effect of each agent on the earth sample, and durability protocols, which adopt a unique experimental procedure to measure a given material property regardless of weathering history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AFNOR XP-P13-901 (2001) Compressed earth blocks for walls and partitions: definitions—specifications—test methods—delivery acceptance conditions

    Google Scholar 

  2. Akagawa S, Nishisato K (2009) Tensile strength of frozen soil in the temperature range of the frozen fringe. Cold Reg Sci Technol 57(1):13–22

    Article  Google Scholar 

  3. Alam I, Naseer A, Shah AA (2015) Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Constr Build Mater 77:154–159

    Article  Google Scholar 

  4. Ali F, Nadjai A, Silcock G, Abu-Tair A (2004) Outcomes of a major research on fire resistance of concrete columns. Fire Saf J 39(6):433–445

    Article  Google Scholar 

  5. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotech 40(3):405–430

    Article  Google Scholar 

  6. Andrady AL, Hamid SH, Hu X, Torikai A (1998) Effects of increased solar ultraviolet radiation on materials. J Photochem Photobiol, B 46(1):96–103

    Article  Google Scholar 

  7. Anger R, Fontaine L, Houben H (2009) Influence of salt content and pH on earthen material workability. (in French). In: Mediterra 2009—1st Mediterranean conference on earth architecture, Edicom Edition, Cagliari (CD)

    Google Scholar 

  8. ASTM D2845-08 (2017) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM international: West Conshohocken, PA, USA

    Google Scholar 

  9. ASTM D558-11 (2011) Standard test methods for moisture-density (unit weight) relations of soil-cement mixtures. ASTM International: West Conshohocken, PA, USA

    Google Scholar 

  10. ASTM D559/D559M-15 (2015) Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International: West Conshohocken, PA, USA

    Google Scholar 

  11. ASTM D560/D560M-16 (2016). Standard Test Methods for Freezing and Thawing Compacted Soil-Cement Mixtures. ASTM International: West Conshohocken, PA, USA

    Google Scholar 

  12. Aubert JE, Gasc-Barbier M (2012) Hardening of clayey soil blocks during freezing and thawing cycles. Appl Clay Sci 65:1–5

    Article  Google Scholar 

  13. Azwa ZN, BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, pp 424-442

    Google Scholar 

  14. Barton GA (1926) On binding-reeds, bitumen, and other commodities in ancient Babylonia. J Am Orient Soc 46:297–302

    Article  Google Scholar 

  15. Basma AA, Al-Homoud AS, Malkawi AIH, Al-Bashabsheh MA (1996) Swelling-shrinkage behavior of natural expansive clays. Appl Clay Sci 11(2–4):211–227

    Article  Google Scholar 

  16. Beckett CTS, Augarde CE (2012) The effect of humidity and temperature on the compressive strength of rammed earth. In: Proceedings of 2nd European conference on unsaturated soils (pp 287–292)

    Google Scholar 

  17. Beninia KCCC, Voorwald HJC, Cioffi MOH (2011) Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Eng 10:3246–3251

    Article  Google Scholar 

  18. Bestraten Castells SC, Hormias Laperal E, Altemir Montaner A (2011) Construcción con tierra en el siglo XXI. Inf Constr 63(523):5–20

    Article  Google Scholar 

  19. Bruno AW (2016) Hygro-mechanical characterisation of hypercompacted earth for building construction, PhD Thesis, Université de Pau et des Pays de l’Adour

    Google Scholar 

  20. Bruno AW, Gallipoli D, Perlot C, Mendes J (2019) Optimization of bricks production by earth hypercompaction prior to firing. J Clean Prod 214:475–482

    Article  Google Scholar 

  21. Bruno AW, Gallipoli D, Perlot C, Mendes J (2017) Mechanical behaviour of hypercompacted earth for building construction. Mater Struct 50(2):160

    Article  Google Scholar 

  22. Bruno AW, Gallipoli D, Perlot C, Mendes J (2017) Effect of stabilisation on mechanical properties, moisture buffering and water durability of hypercompacted earth. Constr Build Mater 149:733–740

    Article  Google Scholar 

  23. Bruno AW, Perlot C, Mendes J, Gallipoli D (2018) A microstructural insight into the hygro-mechanical behaviour of a stabilised hypercompacted earth. Mater Struct 51(1):32

    Article  Google Scholar 

  24. Bruno P (2005) Military rammed earth constructions: fortifications of the period of muslim domination. In: Arquitectura de terra em Portugal/Earth architecture in Portugal, Argumentum pp. p-39

    Google Scholar 

  25. Buchanan AH (2000) Fire performance of timber construction. Prog Struct Mater Eng 2(3):278–289

    Article  Google Scholar 

  26. Bui QB, Morel JC (2015) First exploratory study on the ageing of rammed earth material. Mater 8:1–15

    Article  Google Scholar 

  27. Bui QB, Bui TT, El-Nabouch R, Thai D-K (2019) Vertical rods as a seismic reinforcement technique for rammed earth walls: an assessment. Adv Civil Eng Article ID 1285937, 12 p.

    Google Scholar 

  28. Bui QB, Morel JC, Hans S, Walker P (2014) Effect of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater 54:163–169

    Article  Google Scholar 

  29. Bui QB, Morel JC, Reddy BV, Ghayad W (2009) Durability of rammed earth walls exposed for 20 years to natural weathering. Build Environ 44(5):912–919

    Article  Google Scholar 

  30. Cadena C, Acosta D (2014) Effects of Solar UV radiation on materials used in agricultural industry in Salta, Argentina: study and characterization. J Mater Sci Chem Eng 2(04):1

    Google Scholar 

  31. Carneiro P, Jerónimo A, Silva V, Cartaxo F, Faria P (2016) Improving building technologies with a sustainable strategy. Procedia Social Behavioral Sci 216:829–840

    Article  Google Scholar 

  32. Champiré F, Fabbri A, Morel JC, Wong H, McGregor F (2016) Impact of hygrometry on mechanical behavior of compacted earth for building constructions. Constr Build Mater 110:70–78

    Article  Google Scholar 

  33. Chepil WS, Woodruff NP (1963) The physics of wind erosion and its control. Adv Agron 15:211–302

    Article  Google Scholar 

  34. Ciancio D, Robinson S (2011) Use of the strut-and-tie model in the analysis of reinforced cement-stabilized rammed earth lintels. J Mater Civ Eng 23(5):587–596

    Article  Google Scholar 

  35. Cóias V, Costa JP (2006) Terra Projectada: Um Novo Método de Reabilitação de Construções em Taipa. Houses and cities Built with earth: conservation, significance and urban quality, 59–61

    Google Scholar 

  36. Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13(3):621–634

    Article  Google Scholar 

  37. DeLong HH (1959) Rammed earth walls, in agricultural experiment station circulars. SDSU agricultural experiment station

    Google Scholar 

  38. Dhami NK, Mukherjee A (2015) Can we benefit from the microbes present in rammed earth?. In: Rammed earth construction: cutting-edge research on traditional and modern rammed earth, p 89

    Google Scholar 

  39. DIN 4102 (1998) Fire behaviour of buildings materials and buildings components-part 1: buildings materials, concepts, requirements and tests

    Google Scholar 

  40. DIN 18945 (2013) Earth blocks—Terms and definitions, requirements, test methods

    Google Scholar 

  41. Drdácký M, Lesák J, Niedoba K, Valach J (2014) Peeling tests for assessing the cohesion and consolidation characteristics of mortar and render surfaces. Mater Struct 45(6):1947–1963

    Article  Google Scholar 

  42. Eires R, Camões A, Jalali S (2017) Enhancing water resistance of earthen buildings with quicklime and oil. J Clean Prod 142:3281–3292

    Article  Google Scholar 

  43. EN 13529 (2003) Products and systems for the protection and repair of concrete structures. Test methods.In: Resistance to severe chemical attack. Brussels, CEN

    Google Scholar 

  44. EN 15801 (2009) Conservation of cultural property. Test methods.In: Determination of water absorption by capillarity. Brussels, CEN

    Google Scholar 

  45. Fabbri A, Champiré F, Soudani L, McGregor F, Wong H Poromechanics of compacted earth for building applications. In: Poromechanics VI, pp 664–671

    Google Scholar 

  46. Fabbri A, Morel JC (2016) Nonconventional and vernacular construction materials: characterisation, properties and applications. In: Harries KA, Sharma B (eds.) Woodhead publishing.

    Google Scholar 

  47. Faria P, Santos T, Aubert J-E (2016) Experimental characterization of an earth eco-efficient plastering mortar. J Mater Civ Eng 28(1):04015085

    Article  Google Scholar 

  48. Faria P, LimaJ (2018) Rebocos de terra. Cadernos de Construção com Terra 3. Argumentum. ISBN 978-989-8885-04-3

    Google Scholar 

  49. Faria P, Silva V, Pereira C, Rocha M (2012) The monitoring of rammed earth experimental walls and characterization of rammed earth samples. Rammed Earth Conservation pp 91–97

    Google Scholar 

  50. Fernandes F, Lourenço PB, Castro F (2010) Ancient clay bricks: manufacture and properties. In: Bostenaru Dan M, Prikryl A, Torok A (eds.) Materials, technologies and practice in historic heritage structures, Springer Science+Business Media B.V

    Google Scholar 

  51. Fontaine L, Anger R, Houben H (2009) Some stabilization mechanisms of earth—stabilization of earth by clay-polymer. In: Mediterra 2009—1st Mediterranean conference on earth architecture, Edicom Edition, Cagliari (CD)

    Google Scholar 

  52. Fuentes-García R, Valverde-Palacios I, Valverde-Espinosa I (2015) A new procedure to adapt any type of soil for the consolidation and construction of earthen structures: projected earth system. Mater Constr 65(319):063

    Google Scholar 

  53. Gallipoli D, Bruno AW (2017) A bounding surface compression model with a unified virgin line for saturated and unsaturated soils. Géotech 67(8):703–712

    Article  Google Scholar 

  54. Gerard P, Mahdad M, McCormack AR, Francois B (2015) A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions. Constr Build Mater 95:437–447

    Article  Google Scholar 

  55. Gomes MI, Gonçalves TD, Faria P (2016) Hydric behavior of earth materials and the effects of their stabilization with cement or lime: study on repair mortars for historical rammed earth structures. J Mater Civ Eng 28(7):1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001536

    Article  Google Scholar 

  56. Gomes MI, Gonçalves TD, Faria P (2017) Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. J Clean Prod https://doi.org/10.1016/j.jclepro.2017.11.170

  57. Grossein O (2009) Modélisation et simulation numérique des transferts couplés d’eau, de chaleur et de solutés dans le patrimoine architectural en terre, en relation avec sa dégradation. Ph.D. Thesis, Université Joseph Fourier, Grenoble, France

    Google Scholar 

  58. Guettala A, Abibsi A, Houari H (2006) Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Constr Build Mater 20(3):119–127

    Article  Google Scholar 

  59. Guerrero Baca LF, Soria López FJ (2015) Sustainability of low income dwellings with shed compacted earth (TVC) in México. In: Arquitectura en tierra, patrimonio cultural-XII CIATTI. Congreso de arquitectura en tierra en cuenca de campos. Cátedra juan de Villanueva, Valladolid,Spanish pp 143–152

    Google Scholar 

  60. Guerrero Baca LF, Soria J, Garcia B (2010) Lime on earth architecture design and conservation (in Spanish). In: Arquitectura construida en tierra, tradición e innovación. Cátedra juan de Villanueva, Valladolid, pp 177–186

    Google Scholar 

  61. Han Q, Qu J, Dong Z, Zu R, Zhang K, Wang H, Xie S (2014) The effect of air density on sand transport structures and the adobe abrasion profile: a field wind-tunnel experiment over a wide range of altitude. Bound-Layer Meteorol 150(2):299–317

    Article  Google Scholar 

  62. Heathcote KA (1995) Durability of earthwall buildings. Constr Build Mater 9(3):185–189

    Article  MathSciNet  Google Scholar 

  63. Houben H, Guillaud H (2008) Earth Construction: a comprehensive guide, 3rd edn. CRATerre-EAG, Intermediate Technology Publication, London, UK

    Google Scholar 

  64. Huang P, Peng X (2015) Experimental study on raindrop splash erosion of Fujian earth building rammed earth material. Mater Res Innovations 19(sup8):S8-639

    Article  MathSciNet  Google Scholar 

  65. ICONTEC NTC 5324 (2004) Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Métodos de ensayo. Condiciones de entrega. Instituto Colombiano de Normas Técnicas y Certificación, Bogotá

    Google Scholar 

  66. Ivanov V, Chu J, Stabnikov V (2014) Iron and calcium-based biogrouts for porous soils. Constr Mater 167:36–41. https://doi.org/10.1680/coma.12.00002

    Article  Google Scholar 

  67. Jaquin PA, Augarde CE, Gallipoli D, Toll DG (2009) The strength of unstabilised rammed earth materials. Géotech 59(5):487–490

    Article  Google Scholar 

  68. Jessberger HL (1981) A state-of-the-art report. Ground freezing: mechanical properties, processes and design. Eng Geology 18(1–4), 5–30

    Google Scholar 

  69. Jones MS (2002) Effects of UV radiation on building materials. In UV workshop, Christchurch

    Google Scholar 

  70. Jones J, McMullen MJ, Dougherty J (1987) Toxic smoke inhalation: cyanide poisoning in fire victims. Am J Emerg Med 5(4):317–321

    Article  Google Scholar 

  71. Kebao R, Kagi D (2012) Integral admixtures and surface treatments for modern earth buildings. In: Modern earth buildings: materials, engineering, constructions and applications 256

    Google Scholar 

  72. Khanduri AC, Stathopoulos T, Bédard C (1998) Wind-induced interference effects on buildings—a review of the state-of-the-art. Eng Struct 20(7):617–630

    Article  Google Scholar 

  73. Kinuthia JM (2015) The durability of compressed earth-based masonry blocks. In: Eco-efficient masonry bricks and blocks. Woodhead Publishing, Oxford, pp 393–421

    Google Scholar 

  74. Kita Y, Daneels A, Romo de Vivar A (2013) Bitumen as raw earth stabilizer. In: Kalish R, Cetina C (eds) Tecnohistoria—Objectos y Artefactos de Piedra Caliza. Madera y Otros materiales, Universidad Autónoma de Yucatan, Merida, Yucatan, pp 174–193

    Google Scholar 

  75. Kodur VKR, Phan L (2007) Critical factors governing the fire performance of high strength concrete systems. Fire Saf J 42(6–7):482–488

    Article  Google Scholar 

  76. Krakowiak K (2011) Assessment of the mechanical microstructure of masonry clay brick by nanoindentation, PhD Thesis, University of Minho

    Google Scholar 

  77. Laborel-Préneron A, Aubert J-E, Magniont C, Tribout C, Bertron A (2016) Plant aggregates and fibers in earth construction materials: a review. Constr Build Mater 111:719–734

    Article  Google Scholar 

  78. Lai BT, Wong H, Fabbri A, Branque D (2016) A new constitutive model of unsaturated soils using bounding surface plasticity (BSP) and a non-associative flow rule. Innov Infrast Solut 1(1):3

    Article  Google Scholar 

  79. Laím L, Rodrigues JPC, da Silva LS (2014) Experimental analysis on cold-formed steel beams subjected to fire. Thin-Walled Struct 74:104–117

    Article  Google Scholar 

  80. Lian-You L, Shang-Yu G, Pei-Jun S, Xiao-Yan L, Zhi-Bao D (2003) Wind tunnel measurements of adobe abrasion by blown sand: profile characteristics in relation to wind velocity and sand flux. J Arid Environ 53(3):351–363

    Article  Google Scholar 

  81. Lima J, Correia D, Faria P (2016) Earth mortars: the influence of adding gypsum and particle size of sand (in Portuguese). In: ARGAMASSAS 2016—II Simpósio de Argamassas e Soluções Térmicas de Revestimento, ITeCons, Coimbra, pp 119–130

    Google Scholar 

  82. Lima J, Silva S, Faria P (2016) Earth mortars: influence of linseed oil addition and comparison with conventional mortars (in Portuguese). In: Neves J, Ribeiro A (ed) TEST&E 2016—1º Congresso de Ensaios e Experimentação em Engenharia Civil. IST, Lisbon. https://doi.org/10.5281/zenodo.164637

  83. Lincoln weather and climate. Growing season data, 1887 to 2016. 2017 13 May 2017; Available from: http://snr.unl.edu/lincolnweather/data/GrowingSeasonData.asp

  84. Liu J, Wang T, Tian Y (2010) Experimental study of the dynamic properties of cement-and lime-modified clay soils subjected to freeze–thaw cycles. Cold Reg Sci Technol 61(1):29–33

    Article  Google Scholar 

  85. Lubelli B, Cnudde V, Goncalves TD, Franzoni E, van Hees R, Ioannou I, Menendez B, Nunes C, Siede H, Stefanidou M, Verges-Belmin V, Viles H (2018) Towards a more effective and reliable salt crystallization test for porous building materials: state of the art. Mater Struct 51:55

    Article  Google Scholar 

  86. Mamlouk MS, Zaniewski JP (2011) Materials for civil and construction engineers, 3rd edn. Pearson Educational International, USA

    Google Scholar 

  87. Maniatidis V, Walker P (2003) A review of rammed earth construction. In: Innovation project “Developing Rammed Earth for UK Housing”, Natural building Technology Group, Department of Architecture & Civil Engineering, University of Bath

    Google Scholar 

  88. Marston NJ (2002) Effects of UV radiation on building materials

    Google Scholar 

  89. Maskell D, Heath A, Walker P (2014) Inorganic stabilisation methods for extruded earth masonry units. Constr Build Mater 71:602–609

    Article  Google Scholar 

  90. Melo MJ, Bracci S, Camaiti M, Chiantore O, Piacenti F (1999) Photodegradation of acrylic resins used in the conservation of stone. Polym Degrad Stab 66(1):23–30

    Article  Google Scholar 

  91. Millogo Y, Aubert JE, Séré AD, Fabbri A, Morel JC (2016) Earth blocks stabilized by cow-dung. Mater Struct 49(11):4583–4594

    Article  Google Scholar 

  92. Minke G (2006) Building with earth: design and technology of a sustainable architecture. 2006, Boston, United State of America: Birkhaeuser-Publishers for Architecture, 198

    Google Scholar 

  93. Minke G (2007) Building with earth-30 years of research and development at the University of Kassel. In: International symposium on earthen structures, Bangalore, Interline Publishing

    Google Scholar 

  94. Mukherjee A, Dhami NK, Reddy BVV, Reddy MS (2013) Bacterial calcification for enhancing performance of low embodied energy soil-cement bricks. In: 3rd International conference on sustainable construction materials and technology

    Google Scholar 

  95. National Centers for Environmental Information (2018) Past weather by Zip Code-data table. U.S, Department of Commerce, United States

    Google Scholar 

  96. Nowamooz H, Masrouri F (2008) Hydromechanical behaviour of an expansive bentonite/silt mixture in cyclic suction-controlled drying and wetting tests. Eng Geol 101(3):154–164

    Article  Google Scholar 

  97. O’Connor J (1973) The Adobe book. Ancient City Press, Santa Fe, NM

    Google Scholar 

  98. Obonyo E, Exelbirt J, Baskaran M (2010) Durability of compressed earth bricks: assessing erosion resistance using the modified spray testing. Sustainability 2(12):3639–3649

    Article  Google Scholar 

  99. Oliveira C, Varum H, Costa A (2013) Adobe in art-nouveau constructions in Aveiro. In: Art nouveau and ecology. Historical lab 4-raw materials and art nouveau, 26 January, Aveiro

    Google Scholar 

  100. Ouellet-Plamondon CM, Habert G (2016) Self-compacted clay based concrete (SCCC): proof-of-concept. J Clean Prod 117:160–168

    Article  Google Scholar 

  101. Parracha J, Santos Silva A, Cotrim M, Faria P (2019) Mineralogical and microstructural characterisation of rammed earth and earthen mortars from 12th century Paderne Castle. J Cult Herit 42:226–239

    Article  Google Scholar 

  102. Parracha J, Pereira AS, Velez da Silva R, Almeida N, Faria P (2019) Efficacy of iron-based bioproducts as surface biotreatment for earth-based plastering mortars. J Clean Prod 237:117803

    Google Scholar 

  103. Perrot A, Rangeard D, Menasria F, Guiheneuf S (2018) Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr Build Mater 167:496–504

    Article  Google Scholar 

  104. Pontes J, Santos Silva A, Faria P (2013) Evaluation of pozzolanic reactivity of artificial pozzolans. Mater Sci Forum 730:433–438

    Google Scholar 

  105. Qu JJ, Cheng GD, Zhang KC, Wang JC, Zu RP, Fang HY (2007) An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in northwest China. Bull Eng Geol Env 66(2):153–159

    Article  Google Scholar 

  106. Quagliarini E, Lenci S, Iorio M (2010) Mechanical properties of adobe walls in a Roman Republican domus at Suasa. J Cult Herit 11:130–137

    Article  Google Scholar 

  107. Randriamanana TR, Lavola A, Julkunen-Tiitto R (2015) Interactive effects of supplemental UV-B and temperature in European aspen seedlings: implications for growth, leaf traits, phenolic defense and associated organisms. Plant Physiol Biochem 93:84–93

    Article  Google Scholar 

  108. Ricaud E (2014) Architecture en terre aux Etats-Unis: hybridation des techniques précolombiennes et coloniales. Rapport de mission Richard Morris Hunt Priza-Labex AE and CC, Paris, octobre

    Google Scholar 

  109. Rossi P, Charron JP, Bastien-Masse M, Tailhan JL, le Maou F, Ramanich S (2014) Tensile basic creep versus compressive basic creep at early ages: comparison between normal strength concrete and a very high strength fibre reinforced concrete. Mater Struct 47:1773–1785

    Article  Google Scholar 

  110. RILEM TC 200-HTC (2007). Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures—modelling and applications: Part 1: introduction-general presentation. Mater Struct 40:841-853. https://doi.org/10.1617/s11527-007-9285-2

  111. Russo S, Sciarretta F (2013) Masonry exposed to high temperatures: mechanical behaviour and properties—an overview. Fire Saf J 55:69–86

    Article  Google Scholar 

  112. Santos T, Nunes L, Faria P (2017) Production of eco-efficient earth-based plasters: influence of composition on physical performance and bio-susceptibility. J Clean Prod 167:55–67

    Article  Google Scholar 

  113. Scarato P, Jeannet J (2015) Cahier d’expert bâti en pisé: Connaissance, analyse, traitement des pathologies du bâti en pisé en Rhône-Alpes et Auvergne. ISBN 2746678756:978274667875

    Google Scholar 

  114. Schroeder H (2016) Sustainable building with earth. Springer

    Book  Google Scholar 

  115. Shibi T, Kamei T (2014) Effect of freeze–thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Reg Sci Technol 106:36–45

    Article  Google Scholar 

  116. Shihata SA, Baghdadi ZA (2001) Simplified method to assess freeze-thaw durability of soil cement. J Mater Civ Eng 13(4):243–247

    Article  Google Scholar 

  117. Siavichay D, Narváez M (2010) Propuesta de mejoramiento de las características técnicas del Adobe para la aplicación en viviendas unifamiliares emplazadas en el área periurbana de la ciudad de Cuenca (Bachelor's thesis)

    Google Scholar 

  118. Simonsen E, Isacsson U (2001) Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests. Can Geotech J 38(4):863–875

    Article  Google Scholar 

  119. Tamrakar SB, Toyosawa Y, Mitachi T, Itoh K (2005) Tensile strength of compacted and saturated soils using newly developed tensile strength measuring apparatus. Soils Found 45(6):103–110

    Article  Google Scholar 

  120. Tien C-C, Chang C-H, Liu B-H, Stanley D, Rabb SA, Yu LL, Nguyen T, Sung L (2014) Effects of temperature on surface accumulation and release of silica nanoparticles in an epoxy nanocoating exposed to UV radiation. In: Proceedings nanotech2014, Washington, DC

    Google Scholar 

  121. Val D, Faria P, Silva V (2015) Eco-efficient monolithic walls building solution. Contribute for characterization (in Portuguese). In: CONPAT 2015-XIII Congresso Latino-Americano de Patologia da Construção. IST, Lisboa, pp 7343-1–7343-8

    Google Scholar 

  122. Velez da Silva R (2017) Bioconsolidation of construction materials—effect on the durability of an eco-efficient earthen plaster. MSc thesis, NOVA University of Lisbon

    Google Scholar 

  123. Vissac A, Bourgès A, Gandreau D, Anger R, Fontaine L (2017). Clays and biopolymers—natural stabilizers for earth construction. CRATerre Éditions, Villefontaine

    Google Scholar 

  124. Walker PJ (1995) Strength, durability and shrinkage characteristics of cement stabilised soil blocks. Cement Concr Compos 17(4):301–310

    Article  Google Scholar 

  125. Walker P (2002) The Australian earth building handbook HB195, Standards Australia

    Google Scholar 

  126. Walker PJ (2004) Strength and erosion characteristics of earth blocks and earth block masonry. J Mater Civ Eng 16(5):497–506

    Article  Google Scholar 

  127. Warren J (1999) Conservation of earth structures. Butterworth-Heinemann, Oxford

    Google Scholar 

  128. Wendt CJ, Cyphers A (2008) How the Olmec used bitumen in ancient Mesoamerica. J Anthropol Archaeol 27(2):175–191

    Article  Google Scholar 

  129. Wright GRH (2005) Ancient building technology. Materials Brill Leiden, Boston

    Google Scholar 

  130. Zakaria SF, Rosnan SM (2015) Photodegradation of materials: an overview. In: Proceedings of the international symposium on research of arts, design and humanities (ISRADH 2014). Springer, Singapore, pp 171–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Gallipoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallipoli, D. et al. (2022). Durability of Earth Materials: Weathering Agents, Testing Procedures and Stabilisation Methods. In: Fabbri, A., Morel, JC., Aubert, JE., Bui, QB., Gallipoli, D., Reddy, B.V. (eds) Testing and Characterisation of Earth-based Building Materials and Elements. RILEM State-of-the-Art Reports, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-83297-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83297-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83296-4

  • Online ISBN: 978-3-030-83297-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics