Skip to main content

High-Temperature and Low-Temperature Expansions

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2010 Accesses

Abstract

Series expansions remain, in many cases, one of the most accurate ways of estimating critical exponents. Historically it was the results from series expansions that suggested universality at criticality. Two expansions will be considered in this chapter. In the high-temperature series, the Boltzmann factor is expanded in powers of the inverse temperature, and the sum over all configurations is taken term by term. In the Ising model, this leads to an expansion in powers of \(\tanh (J/T)\ll 1\). In the low-temperature expansion, configurations are counted in order of their importance as the temperature is increased from zero. Starting from the ground state, the series is constructed by successively adding terms from 1, 2, 3, … flipped spins. In the Ising model, this leads to an expansion in powers of \(\exp (-2J/T)\ll 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coefficients in an expansion in ν are marked with a stroke.

  2. 2.

    The coefficients of orders 20 and 21 in [7,8,9] do not agree with those in [6]. According to a private communication by Paolo Butera, the numbers in [6] are probably erroneous.

  3. 3.

    It is the inverse of the fugacity used in Sect. 8.7.

References

  1. C. Domb, Phase Transitions and Critical Phenomena, vol. 3, ed. by C. Domb, M.S. Green (Academic Press, London, 1974)

    Google Scholar 

  2. G.A. Baker, Quantitative Theory of Critical Phenomena (Academic Press, London, 1990)

    Google Scholar 

  3. J. Oitmaa, C. Hamer, W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  4. C. Itzykson, J.M. Drouffe, Statistical Field Theory, vol. 2 (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  5. A.J. Berlinsky, A.B. Harris, Statistical Mechanics, Graduate Texts in Physics (Springer, 2020)

    Google Scholar 

  6. M.F. Sykes, D.S. Gaunt, P.D. Roberts, J.A. Wyles, High temperature series for the susceptibility of the Ising model. I. Two dimensional lattices. J. Phys. A5, 624 (1972)

    Google Scholar 

  7. B.G. Nickel, J.J. Rehr, High-temperature series for scalar-field lattice models: generation and analysis. J. Stat. Phys. 61, 1 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.P. Orrick, B.G. Nickel, A.J. Guttmann, J.H.H. Perk, The susceptibility of the square lattice Ising model: new developments. J. Stat. Phys. 102, 795 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Butera, M. Comi, A library of extended high-temperature expansions of basic observables for the spin S Ising models on two- and three-dimensional lattices. J. Stat. Phys. 109, 311 (2002)

    Article  MathSciNet  Google Scholar 

  10. W.J. Camp, J.P. Van Dyke, High-temperature series for the susceptibility of the spin-s Ising model: Analysis of confluent singularities. Phys. Rev. B11, 2579 (1975)

    Article  ADS  Google Scholar 

  11. D.S. Gaunt, M.F. Sykes, The critical exponent γ for the three-dimensional Ising model. J. Phys. A 12, L25 (1979)

    Google Scholar 

  12. G. Bhanot, M. Creutz, U. Glässner, K. Schilling, Specific heat exponent for the 3-d Ising model from a 24-th order high temperature series. Phys. Rev. B49, 12909 (1994)

    Article  ADS  Google Scholar 

  13. A.J. Guttmann, I.G. Enting, The high-temperature specific heat exponent of the 3-dimensional Ising model. J. Phys. A27, 8007 (1994)

    ADS  MATH  Google Scholar 

  14. P. Butera, M. Comi, Extension to order β 23 of the high-temperature expansions for the spin 1∕2 Ising model on the simple-cubic and body-centered-cubic lattices. Phys. Rev. B62, 14837 (2000)

    Article  ADS  Google Scholar 

  15. T. de Neef, I.G. Enting, Series expansions from the finite lattice method. J. Phys. A10, 801 (1977)

    ADS  Google Scholar 

  16. H. Arisue, T. Fujiwara, New algorithm of the finite lattice method for the high-temperature expansion of the Ising model in three dimensions. Phys. Rev. E67, 066109 (2003)

    ADS  MATH  Google Scholar 

  17. K. Binder, E. Luijten, Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models. Phys. Rep. 344, 179 (2001); M. Hasenbusch, A finite size scaling study of lattice models in the 3d Ising universality class. Phys. Rev. B82, 174433 (2010)

    Google Scholar 

  18. D. Simmons-Duffin, the Lightcone Bootstrap and the spectrum of the 3d Ising CFT. JHEP 03, 086 (2017); S. Rychkov, 3D Ising model: a view from the Conformal Bootstrap island. Comptes Rendus Physique 21, 185 (2020)

    Google Scholar 

  19. I.G. Enting, A.J. Guttmann, I. Jensen, Low-temperature series expansions for the spin-1 Ising model. J. Phys. A27, 6987 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  20. M.F. Sykes, D.S. Gaunt, J.W. Essam, C.J. Elliot, Derivation of low-temperature expansions for Ising model. VI Three-dimensional lattices-temperature grouping. J. Phys. A6, 1507 (1973)

    Google Scholar 

  21. G. Bhanot, M. Creutz, J. Lacki, Low temperature expansion for the Ising model. Phys. Rev. Lett. 69, 1841 (1992)

    Article  ADS  Google Scholar 

  22. A.J. Guttmann, I.G. Enting, Series studies of the Potts model: I. the simple cubic Ising model. J. Phys. A26, 807 (1993)

    Google Scholar 

  23. C. Vohwinkel, Yet another way to obtain low temperature expansions for discrete spin systems. Phys. Lett. B301, 208 (1993)

    Article  ADS  Google Scholar 

  24. G.A. Baker, P. Graves-Morris, Padé Approximants (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  25. F. Wegner, Corrections to scaling laws. Phys. Rev. B5, 4529 (1972)

    Article  ADS  Google Scholar 

  26. H.D. Hunter, G.A. Baker, Methods of series analysis. III. Integral approximant methods. Phys. Rev. B19, 3808 (1979)

    Google Scholar 

  27. P. Butera, M. Comi, Series studies of the Potts model. 2. Bulk series for the square lattice. J. Phys. A27, 1503 (1994)

    Google Scholar 

  28. A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, 25th order high temperature expansion results for three-dimensional Ising like systems on the simple cubic lattice. Phys. Rev. E65, 066127 (2002)

    ADS  Google Scholar 

  30. H. Arisue, T. Fujiwara, K. Tabata, Higher orders of the high-temperature expansion for the Ising model in three dimensions. Nucl. Phys. Proc. Suppl. 129, 774 (2004)

    Article  ADS  Google Scholar 

  31. P. Butera, M. Comi, Critical universality and hyperscaling revisited for Ising models of general spin using extended high temperature series. Phys. Rev. B65, 144431 (2002)

    Article  ADS  Google Scholar 

  32. D. MacDonald, D.L. Hunter, K. Kelly, N. Jan, Self avoiding walks in two to five dimensions: exact enumerations and series studies. J. Phys. A25, 1429 (1992)

    ADS  Google Scholar 

  33. M. Lüscher, P. Weisz, Application of the linked cluster expansion to the n-component phi4 theory. Nucl. Phys. B300, 325 (1988)

    Article  ADS  Google Scholar 

  34. P. Butera, M. Comi, N-vector spin models on the sc and the bcc lattices: a study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order β 21. Phys. Rev. B56, 8212 (1997)

    Article  ADS  Google Scholar 

  35. P. Butera, M. Comi, Critical specific heats of the N-vector spin models on the sc and the bc lattices. Phys. Rev. B60, 6749 (1999)

    Article  ADS  Google Scholar 

  36. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi and E. Vicari, Critical exponents and equation of state of the three dimensional Heisenberg universality class. Phys. Rev. B65, 144520 (2002)

    Article  ADS  Google Scholar 

  37. H. Kleinert, Strong-coupling behavior of ϕ 4-theories and critical exponents. Phys. Rev. D57, 2264 (1998)

    ADS  Google Scholar 

  38. S.A. Antonenko, A.I. Sokolov, Critical exponents for 3d O(n)-symmetric models with n > 3. Phys. Rev. E51, 1894 (1995)

    ADS  Google Scholar 

  39. F. Benitez, J.P. Blaizot, H. Chaté, B. Delamotte, R. Méndes-Galain, N. Wschebor, Non-perturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation. Phys. Rev. E85, 026707 (2012)

    ADS  Google Scholar 

  40. M. Hasenbusch, A finite scaling study of lattice models in the three-dimensional Ising universality class. Phys. Rev. B82, 174433 (2010)

    Article  ADS  Google Scholar 

  41. S. Holtmann, T. Schulze, Critical behavior and scaling functions of the three-dimensional O(6) model. Phys. Rev. E68, 036111 (2003)

    ADS  Google Scholar 

  42. B. Nienhuis, Exact critical exponents of the O(n) models in 2 dimensions. Phys. Rev. Lett. 49, 1062 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  43. N. Clisby, R. Liang, G. Slade, Self-avoiding walk enumeration via lattice expansion. J. Phys. A40, 10973 (2007)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). High-Temperature and Low-Temperature Expansions. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_9

Download citation

Publish with us

Policies and ethics