Skip to main content

Transfer Matrices, Correlation Inequalities, and Roots of Partition Functions

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2001 Accesses

Abstract

In Chaps. 2 and 5, we quantized mechanical systems and classical field theories via the functional integral formalism. Through a Wick rotation, we arrived at a (formal) Euclidean functional integral. In a next step, the underlying Euclidean spacetime is replaced by a lattice, and this discretization leads to well-defined lattice field theories—these are particular spin models with continuous target spaces. To calculate thermal expectation values, one imposes (anti)periodic boundary conditions in the imaginary time direction for the lattice fields. By these steps one approximates quantum field theories in d spacetime dimensions by particular classical statistical systems in d dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An elementary discussion of the subject can be found in [9].

References

  1. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)

    MathSciNet  MATH  Google Scholar 

  2. E. Lieb, F.Y. Wu, Two-dimensional ferroelectric models, in Phase Transitions and Critical Phenomena, vol. 1, ed. by C. Domb, M.S. Green (Academic Press, London, 1972)

    Google Scholar 

  3. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Books, New York, 1982/2008)

    MATH  Google Scholar 

  4. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Zeitschrift f. Physik 31, 253 (1925)

    Article  ADS  Google Scholar 

  5. L. van Hove, Sur l’intégrale de configuration des systèmes des particules à une dimension. Physica 16, 137 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Ruelle, Statistical Mechanics: Rigorous Results (World Scientific Publishing, Singapore, 1999)

    Book  Google Scholar 

  7. T. Dauxois, M. Peyrand, Entropy-driven transition in a one-dimensional system. Phys. Rev. E51, 4027 (1995)

    ADS  Google Scholar 

  8. E. Lieb, D. Mattis, Mathematical Physics in One Dimension (Academic Press, New York, 1966)

    Google Scholar 

  9. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    MATH  Google Scholar 

  10. F.Y. Wu, Self-dual property of the Potts model in one dimension. arXiv:cond-mat/9805301

    Google Scholar 

  11. O. Perron, Zur Theorie der Matrizen. Mathematische Annalen 64, 248 (1907)

    Article  Google Scholar 

  12. G. Frobenius, Über Matrizen aus nicht negativen Elementen. Sitzungsber. Königl. Preuss. Akad. Wiss., 456 (1912)

    Google Scholar 

  13. B. Simon, The P(Ď•)2 Euclidean (Quantum) Field Theory (Princeton Legacy Library, Princeton, 2016)

    Google Scholar 

  14. G.S. Sylvester, Inequalities for continuous-spin Ising ferromagnets. J. Stat. Phys. 15, 327 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  16. S.B. Shlosman, Correlation inequalities for antiferromagnets. J. Stat. Phys. 22, 59 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Ginibre, General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.N. Yang, T.D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of Condensation. Phys. Rev. 87, 404 (1952); Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410 (1952)

    Google Scholar 

  19. C. Newman, Zeros of the partition function of generalized Ising systems. Commun. Pure Appl. Math. 27, 143 (1974)

    Article  MathSciNet  Google Scholar 

  20. K.C. Lee, Zeros of the partition function for a continuum system at first-order transitions. Phys. Rev. E53, 6558 (1996)

    ADS  Google Scholar 

  21. W.T. Lu, F.Y. Wu, Partition function zeroes of a self-dual Ising model. Physica A258, 157 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Asano, Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn. 29, 350 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Ruelle, Extension of the Lee-Yang circle theorem. Phys. Rev. Lett. 26, 303 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  24. E.H. Lieb, A.D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Dunlop, Zeros of partition function via correlation inequalities. J. Stat. Phys. 17, 215 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Dunlop, in Colloquia Mathematica Sociatatis Janos Bolyai 27: Random Fields, ed. by J. Fritz, J.L. Lebowitz, D. Szasz (North Holland, Amsterdam, 1981)

    Google Scholar 

  27. F. Dunlop, C. Newman, Multicomponent field theories and classical rotators. Commun. Math. Phys. 44, 223 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.E. Fisher, in Lectures in Theoretical Physics, vol. 7c, ed. by W.E. Brittin (University of Colorado Press, Boulder, 1965)

    Google Scholar 

  29. J. Stephenson, Two one-dimensional Ising models with disorder points. Can. J. Phys. 48, 1724 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Transfer Matrices, Correlation Inequalities, and Roots of Partition Functions. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_8

Download citation

Publish with us

Policies and ethics