Skip to main content

Mean Field Approximation

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2031 Accesses

Abstract

Since only a few lattice models can be solved explicitly, one is interested in efficient approximation schemes. A simple and universally applicable approximation is the mean field approximation (MFA) which yields qualitatively correct results for many lattice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exponent β should not be confused with the inverse temperature.

  2. 2.

    Extensions of the theory are applicable to first-order phase transitions as well.

References

  1. P. Weiss, L’Hypothèse du champs moleculairé et la propriete ferromagnéticque. J. Phys. 6, 661 (1907)

    MATH  Google Scholar 

  2. P.J. Langevin, Magnétisme et théorie des électrons. J. Chim. Phys. 5, 70 (1905)

    MATH  Google Scholar 

  3. L.E. Reichl, Modern Course in Statistical Mechanics (Wiley, New York, 2016)

    MATH  Google Scholar 

  4. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987)

    Google Scholar 

  5. G. Parisi, Statistical Field Theory (Addison-Wesley, Reading, 1988)

    MATH  Google Scholar 

  6. M. Opper, D. Saad, Advanced Mean Field Methods (Bradford Books, Bradford, 2001)

    Book  Google Scholar 

  7. K. Huang, Introduction to Statistical Physics (Taylor & Francis, Milton Park, 2009)

    Book  Google Scholar 

  8. A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Hasenbusch, A finite size scaling study of lattice models in the 3d Ising universality class. Phys. Rev. B82, 174433 (2010)

    Article  ADS  Google Scholar 

  10. D. Simmons-Duffin, The Lightcone Bootstrap and the spectrum of the 3d Ising CFT. J. High Energy Phys. 3, 086 (2017); S. Rychkov, 3D Ising model: a view from the Conformal Bootstrap island. Comptes Rendus Physique 21, 185 (2020)

    Google Scholar 

  11. L.D. Landau, Theory of Fermi-liquids. Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3 (1957) 920]

    Google Scholar 

  12. L.D. Landau, Oscillations in a Fermi-liquid. Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5 (1957) 101]

    Google Scholar 

  13. P. Nozières, Theory of Interacting Fermi Systems. Frontiers in Physics: Lecture Note and Reprint Series, vol. 19 (Benjamin-Cummings, Redwood City, 1964)

    Google Scholar 

  14. L. Landau, On the theory of Fermi liquid. Sov. Phys. JETP 35, 97 (1958)

    MathSciNet  Google Scholar 

  15. V. Galitskii, A. Migdal, Applications of quantum field theory to the many body problem. Sov. Phys. JETP 7, 96 (1958)

    MathSciNet  Google Scholar 

  16. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinksi, Methods of Quantum Field Theory in Statistical Mechanics (Dover, New York, 1975)

    Google Scholar 

  17. J.C. Toledano, P. Toledano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)

    Book  Google Scholar 

  18. L.S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amst. 17, 793 (1914)

    Google Scholar 

  19. J.S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966)

    Book  Google Scholar 

  20. L. O’Raifeartaigh, A. Wipf und H. Yoneyama, The constraint effective potential. Nucl. Phys. B271, 653 (1986)

    Article  ADS  Google Scholar 

  21. Y. Fujimoto, A. Wipf, H. Yoneyama, Symmetry restoration of scalar models at finite temperature. Phys. Rev. D38, 2625 (1988)

    ADS  Google Scholar 

  22. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Martino Fine Books, Eastford, 2014)

    MATH  Google Scholar 

  23. n.d. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Google Scholar 

  24. S. Coleman, There are no Goldstone bosons in two dimensions. Commun. Math. Phys. 31, 259 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  25. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Mean Field Approximation. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_7

Download citation

Publish with us

Policies and ethics