Skip to main content

Monte Carlo Simulations in Quantum Mechanics

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 1995 Accesses

Abstract

This chapter provides an introduction to particular Markov processes which obey the detailed balance condition. We explain the Metropolis algorithm—still the workhorse in many simulations—the heat bath algorithm, and the hybrid Monte Carlo algorithm. We will apply these algorithms to simulate the anharmonic oscillator. Later in this book, we shall use these algorithms to analyze non-perturbative aspects of spin systems and quantum field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Jacobs, Markov-Prozesse mit endlich vielen Zuständen (Markov Processes with a Finite Number of States). Selecta Mathematica IV (Springer, Berlin, 1972)

    Google Scholar 

  2. M.E.J. Newman, G.G. Barkenna, Monte Carlo Methods in Statistical Physics (Clarendon, Oxford 1999)

    Google Scholar 

  3. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction. Graduate Texts in Physics (Springer, Berlin, 2019)

    Google Scholar 

  4. J.S. Liu, Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics (Springer, Berlin, 2001)

    Google Scholar 

  5. A. Joseph, Markov Chain Monte Carlo Methods in Quantum Field Theories: A Modern Primer. Springer Briefs in Physics (Springer, Berlin, 2020)

    Google Scholar 

  6. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  7. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 170, 97 (1970)

    Article  MathSciNet  Google Scholar 

  8. G.E. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610 (1958)

    Article  Google Scholar 

  9. M. Creutz, B.A. Freedman, A statistical approach to quantum mechanics. Ann. Phys. 132, 427 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Duane, A.D. Kennedy, A.D. Pendleton, B.J. Roweth, Hybrid Monte Carlo. Phys. Lett. B 195, 216 (1987)

    ADS  Google Scholar 

  11. I. Montvay, G. MĂĽnster, Quantum Fields on a Lattice (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  12. H.J. Rothe, Lattice Gauge Theories: An Introduction (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  13. C. Urbach, Untersuchung der Reversibilitätsverletzung beim HMC-Algorithmus. Thesis FU Berlin, 2002

    Google Scholar 

  14. M. Griebel, S. Knapek, G. Zumbusch, A. Caglar, Numerical Simulation in Molecular Dynamics (Springer, Berlin, 2010)

    MATH  Google Scholar 

  15. G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson, Langevin simulation of lattice field theories. Phys. Rev. D 32, 2736 (1985)

    Article  ADS  Google Scholar 

  16. D.H. Weingarten, D.N. Petcher, Monte Carlo integration for lattice gauge theories with fermions. Phys. Lett. B 99, 333 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Gupta, A. Irback, F. Karch, B. Petersson, The acceptance probability in the hybrid Monte Carlo method. Phys. Lett. B 242, 437 (1990)

    Article  ADS  Google Scholar 

  18. A.D. Kennedy, B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B 607, 456 (2001)

    Article  ADS  Google Scholar 

  19. E. Forest, R.D. Ruth, Fourth-order symplectic integration. Physica D 43, 105 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. I.P. Omelyan, I.M Mryglod, R. Folk, Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Comp. Phys. Comm. 151, 272 (2003)

    Google Scholar 

  21. T. Kaestner, G. Bergner, S. Uhlmann, A. Wipf, C. Wozar, Two-dimensional Wess-Zumino models at intermediate couplings. Phys. Rev. D 78, 095001 (2008)

    Article  ADS  Google Scholar 

  22. P. Marenzoni, L. Pugnetti, P. Rossi, Measure of autocorrelation times of local hybrid Monte Carlo algorithm for lattice QCD. Phys. Lett. B 315, 152 (1993)

    Article  ADS  Google Scholar 

  23. B. Wellegehausen, A. Wipf, C. Wozar, Casimir scaling and string breaking in G2 gluodynamics. Phys. Rev. D 83, 016001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Monte Carlo Simulations in Quantum Mechanics. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_4

Download citation

Publish with us

Policies and ethics