Skip to main content

Interacting Fermions

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 1990 Accesses

Abstract

In this chapter we study interacting four-Fermi theories in two and three spacetime dimension. Their Lagrangian density contains—besides the ubiquitous Dirac term —a Lorentz invariant interaction term with four powers of the Fermi field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We emphasize this point since in applications in condensed matter theory often reducible four-component Fermi fields in 3 spacetime dimensions are considered.

  2. 2.

    The U(N f) symmetry can be extended to an O(2N f) symmetry. This is made explicit by rewriting the Dirac spinor in terms of its Majorana components.

  3. 3.

    Actually, all one-flavor four-Fermi theories in two and three dimensions are equivalent.

  4. 4.

    Since ψ has an even number of components this is certainly true on a finite lattice.

  5. 5.

    Although γ μ are the matrices in Euclidean space, h is Hamiltonian in Minkowski spacetime.

  6. 6.

    We use the same symbol \({\mathcal D}\) for the Dirac operator acting on 1 flavor and on N f flavors.

  7. 7.

    For dimensional reasons one should consider \(\det ({\mathcal D}/\mu _0)\) where μ 0 is just this scale factor.

  8. 8.

    The series converges for |μ|≤ σ.

  9. 9.

    The momentum integrals of terms with odd powers of v vanish because of rotational symmetry.

  10. 10.

    We skip the v 0-contribution, which in a non-covariant regularization needs separate treatment.

  11. 11.

    In Problem 17.8 we shall consider the simpler case d = 2.

  12. 12.

    With our choice of A ν, the eigenmodes are superpositions of functions with different p 1.

  13. 13.

    In the limit it is irrelevant that g 0 is actually 1 and not 2.

  14. 14.

    One may skip the term t∕12 in P t and then the term s∕12a in (17.166), and the integral would still exist. But this leads to a numerically less stable representation of the analytic continuation.

  15. 15.

    For periodic boundary conditions and with the SLAC derivative, N must be odd.

  16. 16.

    Because of fermion doubling 1,  2,  3, … naive fermions in two spacetime dimensions describe 4,  8,  12, … flavors.

References

  1. W. Thirring, A soluble relativistic field theory. Ann. Phys. 3, 91 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D.J. Gross, A. Neveu, Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D10, 3235 (1974)

    ADS  Google Scholar 

  3. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity I. Phys. Rev. 122, 345 (1961); Dynamical model of elementary particles based on an analogy with superconductivity II. Phys. Rev. 124, 246 (1961)

    Google Scholar 

  4. J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, A. Wipf, Inhomogeneous phases in the Gross-Neveu model in 1+1 dimensions. Phys. Rev. D102, 114501 (2020)

    ADS  Google Scholar 

  5. H. Gies, L. Janssen, UV fixed-point structure of the three-dimensional Thirring model. Phys. Rev. D82 085018 (2010)

    ADS  Google Scholar 

  6. F. Gehring, H. Gies, L. Janssen, Fixed-point structure of low-dimensional relativistic fermion field theories: universality classes and emergent symmetry. Phys. Rev. D92, 085046 (2015)

    ADS  MathSciNet  Google Scholar 

  7. G. Parisi, The theory of non-renormalizable interactions: the large N expansion. Nucl. Phys. B100, 368 (1975)

    Article  ADS  Google Scholar 

  8. K. Gawedzki, A. Kupiainen, Renormalizing the nonrenormalizable. Phys. Rev. Lett. 55, 363 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Rosenstein, B. Warr, S.H. Park, Dynamical symmetry breaking in four Fermi interaction models. Phys. Rep. 205, 59 (1991)

    Article  ADS  Google Scholar 

  10. J. Braun, H. Gies, D.D. Scherer, Asymptotic safety: a simple example. Phys. Rev. D83, 085012 (2011)

    ADS  Google Scholar 

  11. S. Weinberg, Critical phenomena for field theorists, in Understanding the Fundamental Constituents of Matter, ed. by A. Zichichi. The Subnuclear Series, vol. 14 (1976), pp. 1–52

    Google Scholar 

  12. G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449 (1984)

    Article  ADS  Google Scholar 

  13. S. Hands, C. Strouthos, Quantum critical behaviour in a graphene-like model. Phys. Rev. B78, 165423 (2008)

    Article  ADS  Google Scholar 

  14. I.F. Herbut, QED3 theory of underdoped high-temperature superconductors. Phys. Ref. B66, 094504 (2002)

    Article  ADS  Google Scholar 

  15. J.I. Cirac, P. Maraner, J.K. Pachos, Cold atom simulation of interacting relativistic quantum field theories. Phys. Rev. Lett. 105, 190403 (2010)

    Article  ADS  Google Scholar 

  16. B. Klaiber, The thirring model, in Boulder 1967. Lecture notes in Physics XA (Gordon and Breach, New York, 1968)

    Google Scholar 

  17. I. Sachs, A. Wipf, Generalized thirring models. Ann. Phys. 249, 380 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Karbach, G. Müller, Introduction to the Bethe ansatz I. Comput. Phys. 11, 36 (1997); Introduction to the Bethe ansatz II. 12, 565 (1998)

    Google Scholar 

  19. V.G. Vaks, A.I. Larkin, On the application of the methods of superconductivity theory to the problem of the masses of elementary particles. Sov. Phys. JETP. 13, 192 (1961)

    MATH  Google Scholar 

  20. M. Frank, M. Buballa, M. Oertel, Flavor mixing effects on the QCD phase diagram at nonvanishing isospin chemical potential: one or two phase transitions. Phys. Lett. B562, 221 (2003)

    Article  ADS  Google Scholar 

  21. R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1957); J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1959)

    Google Scholar 

  22. H.W. Furry, A symmetry theorem in the positron theory. Phys. Rev. 51, 12 (1937)

    Article  ADS  MATH  Google Scholar 

  23. M. Thies, K. Urlichs, Revised phase diagram of the Gross-Neveu model. Phys. Rev. D67, 125015 (2003)

    ADS  Google Scholar 

  24. O. Schnetz, M. Thies, K. Urlichs, Phase diagram of the Gross-Neveu model: exact results and condensed matter precursors. Ann. Phys. 314, 425 (2004)

    Article  ADS  MATH  Google Scholar 

  25. G. Basar, G.V. Dunne, M. Thies, Inhomogeneous condensates in the thermodynamics of the chiral NJL(2) model. Phys. Rev. D79, 105012 (2009)

    ADS  Google Scholar 

  26. M. Buballa, S. Carignano, Inhomogeneous chiral condensates. Prog. Part. Nucl. Phys. 81, 39 (2015)

    Article  ADS  MATH  Google Scholar 

  27. L. O’Raifeartaigh, A. Wipf, H. Yoneyama, The constraint effective potential. Nucl. Phys. B271, 653 (1986)

    Article  ADS  Google Scholar 

  28. U. Wolff, The phase diagram of the infinite N Gross-Neveu model at finite temperature and chemical potential. Phys. Lett. 157B, 303 (1985)

    Article  ADS  Google Scholar 

  29. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. reprinted, section 12.13 (Cambridge University Press, Cambridge, 1963)

    Google Scholar 

  30. M. Chamberland, A. Straub, On gamma quotients and infinite products. Adv. Appl. Math. 51, 546 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.P. Klevansky, R.H. Lemmer, Chiral symmetry restoration in the Nambu-Jona-Lasinio model with a constant electromagnetic field. Phys. Rev. D39, 3478 (1989)

    ADS  Google Scholar 

  32. K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field. Theor. Math. Phys. 89, 1161 (1992)

    Article  MathSciNet  Google Scholar 

  33. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions. Phys. Rev. D52, 4718 (1995)

    ADS  Google Scholar 

  34. F. Preis, A. Rebhan, A. Schmitt, Inverse magnetic catalysis in field theory and gauge-gravity duality. Lect. Notes Phys. 871, 51–86 (2013)

    Article  ADS  Google Scholar 

  35. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Amsterdam, 2007)

    MATH  Google Scholar 

  36. D. Ebert, K.G. Klimenko, M.A. Vdovichenko, A.S. Vshivtsev, Magnetic osciallations in dense cold quark matter with four fermion interactions. Phys. Rev. D61, 025005 (2000)

    ADS  Google Scholar 

  37. I.A. Shovkovy, Magnetic catalysis: a review. Lect. Notes Phys. 871, 13 (2012)

    Article  ADS  Google Scholar 

  38. T. Inagaki, D. Kimura, T. Murata, Four fermion interaction model in a constant magnetic field at finite temperature ahd chemical potential. Prog. Theor. Phys. 111, 371 (2004)

    Article  ADS  MATH  Google Scholar 

  39. R. Narayanan, Phase diagram of the large N Gross-Neveu model in a finite periodic box. Phys. Rev. D101, 096001 (2020)

    ADS  MathSciNet  Google Scholar 

  40. M. Buballa, L. Kurth, M. Wagner, M. Winstel, Regulator dependence of inhomogeneous phases in the (2+1)-dimensional Gross-Neveu model. Phys. Rev. D103, 034503 (2020)

    ADS  MathSciNet  Google Scholar 

  41. S. Blau, M. Visser, A. Wipf, Zeta functions and the Casimir energy. Nucl. Phys. B310, 163 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Kirchberg, D. Laenge, A. Wipf, Extended supersymmetries and the Dirac operator. Ann. Phys. 315, 467 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, A. Wipf, Inhomogeneous phases in the Gross-Neveu model in 1+1 dimensions. Phys. Rev. D101, 094512 (2020)

    ADS  Google Scholar 

  44. R.F. Dashen, B. Hasslacher, A. Neveu, Semiclassical bound states in an asymptotically free theory. Phys. Rev. D12, 2443 (1975)

    ADS  MathSciNet  Google Scholar 

  45. R. Pausch, M. Thies, V.L. Dolman, Solving the Gross-Neveu model with relativistic many body methods. Z. Phys. A338, 441 (1991)

    Article  ADS  Google Scholar 

  46. J. Feinberg, All about the static fermion bags in the Gross-Neveu model. Ann. Phys. 309, 166 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. G. Basar, G.V. Dunne, Self-consistent crystalline condensate inchiral Gross-Neveu and Bogoliubov-de Gennes systems. Phys. Rev. Lett. 100, 200404 (2008)

    Article  ADS  Google Scholar 

  48. S. Hands, A. Kocic, J.B. Kogut, Four Fermi theories in fewer than four dimensions. Ann. Phys. 224, 29 (1993)

    Article  ADS  Google Scholar 

  49. J. Zinn-Justin, Four fermion interacction near four dimensions. Nucl. Phys. B367, 105 (1991)

    Article  ADS  Google Scholar 

  50. J.A. Gracey, The beta function of the chiral Gross-Neveu model at O(1∕N 2). Phys. Rev. D50, 2840 (1994)

    ADS  Google Scholar 

  51. A. Vasiliev, S.E. Derkachov, N. Kivel, A. Stepanenko, The 1/n expansion in the Gross-Neveu model: conformal bootstrap calculation of the index eta in order 1/n3. Theor. Math. Phys. 94, 127 (1993)

    Article  Google Scholar 

  52. J. Gracey, Computation of critical exponent eta at O(1/N 3) in the four Fermi model in arbitrary dimensions. Int. J. Mod. Phys. A9, 727 (1994)

    Article  ADS  Google Scholar 

  53. J. Gracey, Four loop MS-bar mass anomalous dimension in the Gross-Neveu model. Nucl. Phys. B802, 330 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. L.N. Mihaila, N. Zerf, B. Ihring, I.F. Herbut, M.M. Scherer, Gross-Neveu-Yukawa model at three loops and Ising critical behavior of Dirac systems. Phys. Rev. B96, 165133 (2017)

    Article  ADS  Google Scholar 

  55. N. Zerf, L.N. Mihaila, P. Marquard, I.F. Herbut, M.M. Scherer, Four-loop critical exponents for the Gross-Neveu-Yukawa models. Phys. Rev. D96, 096010 (2017)

    Google Scholar 

  56. L. Janssen, I.F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: a functional renormalization group approach. Phys. Rev. B89, 205403 (2014)

    Article  ADS  Google Scholar 

  57. D. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  58. K. Binder, Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B43, 119 (1981)

    Article  ADS  Google Scholar 

  59. D. Schmidt, Three-dimensional four-fermion theories with exact chiral symmetry on the lattice. Thesis, University Jena. https://doi.org/10.22032

  60. L. Karkkainen, R. Lacaze, P. Lacock, B. Petersson, Critical behaviour of the 3d Gross-Neveu and Higgs-Yukawa models. Nucl. Phys. B415, 781 (1994)

    Article  ADS  Google Scholar 

  61. S. Christofi, C. Strouthos, Three dimensional four-fermion models - A Monte Carlo study. J. High Energy Phys. 05, 088 (2007)

    Article  ADS  Google Scholar 

  62. F. Hoefling, C. Nowak, C. Wetterich, Phase transition and critical behaviour of the d=3 Gross-Neveu model. Phys. Rev. B66, 205111 (2002)

    Article  ADS  Google Scholar 

  63. L. Del Debbio, S.J. Hands, The three-dimensional Thirring model for N f = 4 and N f = 6. Nucl. Phys. B552, 339 (1999)

    Article  ADS  Google Scholar 

  64. S. Hands, B. Lucini, The phase diagram of the three dimensional Thirring model. Phys. Lett. B461, 263 (1999)

    Article  ADS  Google Scholar 

  65. S. Christofi, S. Hands, C. Strouthos, Critical flavor number in the three dimensional Thirring model. Phys. Rev. D75, 101701 (2007)

    ADS  Google Scholar 

  66. B. Wellegehausen, D. Schmidt, A. Wipf, Critical flavour number of the Thirring model in three dimensions. Phys. Rev. D96, 094504 (2017)

    ADS  Google Scholar 

  67. J.J. Lenz, A. Wipf, B. Wellegehausen, Absence of chiral symmetry breaking in Thirring models in 1+2 dimensions. Phys. Rev. D100, 054501 (2019)

    ADS  MathSciNet  Google Scholar 

  68. S. Hands, Critical flavor number in the 2+1D Thirring model. Phys. Rev. D99, 034504 (2019)

    ADS  MathSciNet  Google Scholar 

  69. S. Hands, M. Mesiti, J. Worthy, Critical behaviour in the single flavor Thirring model in 2-1d. Phys. Rev. D102, 094502 (2020)

    ADS  Google Scholar 

  70. L. Dabelow, H. Gies, B. Knorr, Momentum dependence of quantum critical Dirac systems. Phys. Rev. D99, 125019 (2019)

    ADS  MathSciNet  Google Scholar 

  71. F. Karsch, J.B. Kogut, H.W. Wyld, The Gross-Neveu model at finite temperature and density. Nucl. Phys. B280, 289 (1987)

    Article  ADS  Google Scholar 

  72. V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  73. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C6, 1181 (1973)

    ADS  Google Scholar 

  74. J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, A. Wipf, Baryons in the Gross-Neveu model in 1+1 dimensions at finite number of flavors. Phys. Rev. D102, 114501 (2020)

    ADS  MathSciNet  Google Scholar 

  75. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford 1987)

    Google Scholar 

  76. H. Gies, C. Wetterich, Renormalization flow of bound states. Phys. Rev. D65, 065001 (2002)

    ADS  MathSciNet  Google Scholar 

  77. T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Dirac materials. Adv. Phys. 63, 1 (2014)

    Article  ADS  Google Scholar 

  78. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schonhammer, Functional renormalization group approach to correlated fermion systems. Ref. Mod. Phys. 84, 299 (2012)

    Article  ADS  Google Scholar 

  79. G.P. Vacca, L. Zambelli, Multimeson Yukawa interactions at criticality. Phys. Rev. D91, 125003 (2015)

    ADS  Google Scholar 

  80. B. Knorr, Ising and Gross-Neveu model in next-to-leading order. Phys. Rev. B94, 245102 (2016)

    Article  ADS  Google Scholar 

  81. M. Heilmann, T. Hellwig, B. Knorr, M. Ansorg, A. Wipf, Convergence of derivative expansion in supersymmetric functional RG flows. J. High Energy Phys. 02, 109 (2015)

    Article  ADS  Google Scholar 

  82. S. Blau, M. Visser, A. Wipf, Analytical results for the effective action. Int. J. Mod. Phys. A6, 5408 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Covariant ζ-Function Regularization

Appendix: Covariant ζ-Function Regularization

Rather than applying a Poisson resummation formula to the sum over the Matsubara frequencies only, as we did in (17.83), we could resum the Gaussian sum over Matsubara frequencies and spatial momenta at once. With (16.143) this leads to an alternative representation for the ζ-function,

$$\displaystyle \begin{aligned} \zeta_{H}(s)=\frac{d_s}{2}\frac{\beta V_s}{(4\pi)^{d/2}} \frac{1}{\varGamma(s)} \int \mathrm{d} t\,t^{s-1-\frac{d}{2}} \mathrm{e}^{-t\sigma^2}\sum_{n} (-1)^n \mathrm{e}^{-\beta^2n^2/4t -n\beta\mu} \sum_{\boldsymbol{n}} \mathrm{e}^{-L^2\boldsymbol{n}^2/4t}\,.{} \end{aligned} $$
(17.218)

The term with vanishing n and n is identical to the zero-temperature, zero-density, and infinite-volume contribution ζ (0, ) in (17.86). The remaining UV-finite series, denoted by ζ (2), represents the sum ζ (0, L) + ζ (1) of the ζ-functions in (17.86) and (17.90) and comprises the finite temperature, density, and volume corrections. It follows that the first contribution in the associated decomposition of the effective potential

$$\displaystyle \begin{aligned} U_{\mathrm{eff}}=U^{(0,\infty)}_{\mathrm{eff}}+U^{(2)}_{\mathrm{eff}}\, {} \end{aligned} $$
(17.219)

is the expressions in (17.87) and (17.89), but without the sums over Bessel functions. Again we use (5.30) to express the remaining alternating series in (17.218) as sum over modified Bessel functions. The derivative with respect to s at s = 0 finally yields

$$\displaystyle \begin{aligned} U^{(2)}_{\mathrm{eff}} =\frac{d_s\,\sigma^d}{(2\pi)^{d/2}} {\sum_{n,\boldsymbol{n}}}'(-1)^n \mathrm{e}^{-n\beta \mu}\, \frac{K_{d/2}\big(\beta\sigma\sqrt{n^2+\tau^2\boldsymbol{n}^2}\,\big)} {\big(\beta\sigma\sqrt{n^2+\tau^2\boldsymbol{n}^2}\,\big)^{d/2}},\quad \tau=\frac{L}{\beta}\,, {} \end{aligned} $$
(17.220)

where the prime at the summation symbol means omission of the term with vanishing n and n.

In the zero temperature and density limit, only terms with n = 0 contribute, and \(U^{(2)}_{\mathrm {eff}}\) is equal to the sums over Bessel functions in (17.87) and (17.89). On the other hand, at finite temperature but in the thermodynamic limit L →, only terms with vanishing n contribute. Using an integral representation for the Bessel function, one can prove the useful relation given in Problem 17.6. This relation shows that for Lβ →, the sum (17.220) is identical to the integral (17.92),

$$\displaystyle \begin{aligned} \begin{array}{rcl} \lim_{L\to\infty} U^{(2)}_{\mathrm{eff}} & =&\displaystyle 2d_s\,\Big(\frac{\sigma}{2\pi\beta}\Big)^{d/2} \sum_{n\geq 1}(-1)^n \cosh(n\beta\mu) \frac{K_{d/2}(n\beta\sigma)}{n^{d/2}}{}\\ & =&\displaystyle \frac{d_s}{2\beta (2\pi)^{d-1}}\int\mathrm{d} \boldsymbol{p}\,\log\big(1+\mathrm{e}^{-\beta(\varepsilon_{\boldsymbol{p}}+\mu)}\big) +(\mu\to-\mu)= \lim_{L\to\infty}U^{(1)}_{\mathrm{eff}} \,. \end{array} \end{aligned} $$
(17.221)

More generally, for finite temperature and finite box size \(U^{(2)}_{\mathrm {eff}}=U^{(0,L)}_{\mathrm {eff}} +U^{(1)}_{\mathrm {eff}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Interacting Fermions. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_17

Download citation

Publish with us

Policies and ethics