Skip to main content

Functional Renormalization Group

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2035 Accesses

Abstract

The functional renormalization group (FRG) is a particular implementation of the renormalization group concept which combines the functional methods of quantum field theory with the renormalization group idea of Kenneth Wilson. It interpolates smoothly between the known microscopic laws and the complex macroscopic phenomena in physical systems. It is a momentum-space implementation of the renormalization group idea and can be formulated directly for a continuum field theory—no lattice regularization is required. In most approaches one uses a scale-dependent Schwinger functional or scale-dependent effective action. The scale parameter acts similarly as an adjustable screw of a microscope. For large values of a momentum scale k or equivalently for a high resolution of the microscope, one starts with the known microscopic laws. With decreasing scale k or equivalently with decreasing resolution of the microscope, one moves to a coarse-grained picture adequate for macroscopic phenomena. The flow from microscopic to macroscopic scales is given by a conceptionally simple but technically demanding flow equation for scale-dependent functionals. A priori the method is non-perturbative and does not rely on an expansion in a small coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The calculation in this section was performed with REDUCE 3.8.

  2. 2.

    Private communication by Daniel Litim.

References

  1. K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Polchinski, Renormalization and effective lagrangians. Nucl. Phys. B231, 269 (1984)

    Article  ADS  Google Scholar 

  3. T.R. Morris, On truncations of the exact renormalization group. Phys. Lett. B334, 355 (1994)

    Article  ADS  Google Scholar 

  4. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B301, 90 (1993)

    Article  ADS  Google Scholar 

  5. K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications. Int. J. Mod. Phys. B14, 1249 (2000)

    ADS  MATH  Google Scholar 

  6. C. Bagnus, C. Bervillier, Exact renormalization group equations: an introductory review. Phys. Rep. 348, 91 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Berges, N. Tetradis, C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Polonyi, Lectures on the functional renormalization group methods. Central Eur. J. Phys. 1, 1 (2003)

    ADS  Google Scholar 

  9. J. Pawlowski, Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Gies, Introduction to the functional RG and applications to gauge theories, in Renormalization Group and Effective Field Theory Approaches to Many-Body Systems, ed. by A. Schwenk, J. Polonyi. Lecture Notes of Physics, vol. 852 (Springer, Berlin, 2012)

    Google Scholar 

  11. P. Kopietz, L. Bartosch, F. Schütz, Introduction to the Functional Renormalization Group. Lecture Notes of Physics, vol. 798 (Springer, Berlin, 2010)

    Google Scholar 

  12. D. Litim, Optimization of the exact renormalization group. Phys. Lett. B486, 92 (2000)

    Article  ADS  Google Scholar 

  13. D. Litim, Optimized renormalization group flows. Phys. Rev. D64, 105007 (2001)

    ADS  Google Scholar 

  14. S.D. Drell, M. Weinstein, S. Yankielowicz, Variational approach to strong coupling theory. 1. ϕ 4 theory. Phys. Rev. D14, 487 (1976)

    Google Scholar 

  15. D. Lange, A. Kirchberg, A. Wipf, From the dirac operator to Wess-Zumino models on spatial lattices. Ann. Phys. 316, 357 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.F. Litim, J.P. Pawlowski, L. Vergara, Convexity of the effective action from functional flows. ArXiv:hep-th/0602140

    Google Scholar 

  17. D. Zappala, Improving the renormalization group approach to the quantum-mechanical double well potential. Phys. Lett. A290, 35 (2001)

    Article  ADS  Google Scholar 

  18. C.M. Bender, T.T. Wu, Anharmonic oscillator. Phys. Rev. D184, 1231 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Morris, The renormalization group and two-dimensional multicritical effective scalar field theory. Phys. Lett. B345, 139 (1995)

    Article  ADS  Google Scholar 

  20. F. Synatschke, H. Gies, A. Wipf, Phase diagram and fixed point structure of two dimensional N=1 Wess-Zumino model. Phys. Rev. D80, 085007 (2009)

    ADS  Google Scholar 

  21. D.F. Litim, Critical exponents from optimized renormalization group flows. Nucl. Phys. B631, 128 (2002)

    Article  ADS  Google Scholar 

  22. M. D’Attanasio, T.R. Morris, Large N and the renormalization group. Phys. Lett. B409, 363 (1997)

    Article  ADS  Google Scholar 

  23. M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: a review. Phys. Rep. 385, 69 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.P. Blaizot, R. Mendéz-Galain, N. Wschebor, A new method to solve the non perturbative renormalization group equations. Phys. Lett. B632, 571 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Borchardt, B. Knorr, Solving functional flow equations with pseudo-spectral methods. Phys. Rev. D94, 025027 (2016)

    ADS  Google Scholar 

  26. V. Von Gersdorff, C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition. Phys. Rev. B64, 054513 (2001)

    Article  ADS  Google Scholar 

  27. F. Benitez, J.P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain, N. Wschebor, Non-perturbative renormalization group preserving full-momentum dependence: implementation and quantitive evaluation. Phys. Rev. E85, 026707 (2012)

    ADS  Google Scholar 

  28. M. Hasenbusch, Finite scaling study of lattice models in the three-dimensional Ising universality class. Phys. Rev. B82, 174433 (2010)

    Article  ADS  Google Scholar 

  29. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Critical exponents and equation of state of the three dimensional Heisenberg universality class. Phys. Rev. B65, 144520 (2002)

    Article  ADS  Google Scholar 

  30. S. Holtmann, T. Schulze, Critical behavior and scaling functions of the three-dimensional O(6) model. Phys. Rev. E68, 036111 (2003)

    ADS  Google Scholar 

  31. D. Litim, M. Mastaler, F. Synatschke-Czerwonka, A. Wipf, Critical behavior of supersymmetric O(N) models in the large-N limit. Phys. Rev. D84, 125009 (2011)

    ADS  Google Scholar 

  32. N. Tetradis, C. Wetterich, Critical exponents from effective average action. Nucl. Phys. B422, 541 (1994)

    Article  ADS  Google Scholar 

  33. N. Tetradis, D. Litim, Analytical solutions of exact renormalization group equations. Nucl. Phys. B464, 492 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Braun, H. Gies, D. Scherer, Asymptotic safety: a simple example. Phys. Rev. D83, 085012 (2011)

    ADS  Google Scholar 

  35. H. Gies, C. Wetterich, Renormalization flow of bound states. Phys. Rev. D65, 065001 (2002)

    ADS  MathSciNet  Google Scholar 

  36. J. Braun, Fermion interaction and universal behavior in strongly interacting theories. J. Phys. G39, 033001 (2012)

    Article  ADS  Google Scholar 

  37. M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B417, 181 (1994)

    Article  ADS  Google Scholar 

  38. U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories. Phys. Lett. B335, 364 (1994)

    Article  ADS  Google Scholar 

  39. H. Gies, Running coupling in Yang-Mills theory: a flow equation study. Phys. Rev. D66, 025006 (2002)

    ADS  MathSciNet  Google Scholar 

  40. D. Litim, J. Pawlowski, Wilsonian flows and background fields. Phys. Lett. B546, 279 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Reuter, M. Niedermeier, The asymptotic safety scenario in quantum gravity. Living Rev. Relat. 9, 5 (2006)

    Article  ADS  Google Scholar 

  43. M. Reuter, F. Saueressing, Functional renormalization group equations, asymptotic safety and quantum Einstein gravity. arXiv:0708.1317

    Google Scholar 

  44. M. Bonini, F. Vian, Wilson renormalization group for supersymmetric gauge theories and gauge anomalies. Nucl. Phys. B532, 473 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. F Synatschke, J. Braun, A. Wipf, N=1 Wess Zumino model in d=3 at zero and finite temperature. Phys. Rev. D81, 125001 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

12.8 Programs for Chap. 12

The octave program in Listing 12.1 calculates the flow of the couplings \(E_k,\,\omega _k^2\), and λ k in the LPA approximation and the truncation with a 6 = 0. The flow begins at k = 105, but only the values of the couplings for k = 2 down to k = 0 are plotted.

Listing 12.1 Flow of couplings in polynomial LPA

1 function x=truncflowanho_lambda

2  # calculates the flow for even potentials projected onto

3  # quartic polynoms. At the cutoff E=0. The program asks

4  # for lambda at the cutoff in units of omega. The running

5  # of the effective couplings  in the infrared is plotted.

6  # couplLambda=[0;-1;0];        # for 4th order polynomial

7 couplLambda=[0;-1;0;0;0;0;0];   # for 12th order polynomial

8 Nk=100000;disp=20;

9 couplLambda(3)=lambda;

10 k=linspace(10000,0,Nk);

11  #[coupl]=lsode("flowOpt4",couplLambda,k);

12  #[coupl]=lsode("flowCallan4",couplLambda,k);

13 [coupl]=lsode( "flowOpt12",couplLambda,k);

14 xh=coupl(Nk-disp:Nk,:,:);

15 kh=k(Nk-disp:Nk);

16 plot(kh,xh(:,1),kh,xh(:,2),kh,xh(:,3));

17 legend( ’E’, ’omega**2’, ’lambda’);

18 printf( "E0 = \t %4.4f\n",coupl(Nk,1));

19 printf( "E1 = \t %4.4f\n",coupl(Nk,1)+sqrt(coupl(Nk,2)));

20 endfunction

Listing 12.2 Called by program 12.1: optimal regulator, fourth-order polynomial

1 function coupldot=flowOpt4(coupl,k)

2 ksquare=k*k;

3 P=1/(ksquare+coupl(2));xh=ksquare*P/pi;

4 coupldot(1)=xh-1/pi;

5 coupldot(2)=-xh*P*coupl(3);

6 coupldot(3)=-6*coupldot(2)*P*coupl(3);

7 endfunction

Listing 12.3 Called by program 12.1: Callan-Symanzik regulator and fourth-order polynomial

1 function coupldot=flowCallan4(coupl,k)

2 P=1/(k*k+coupl(2));

3 rootP=k*sqrt(P);

4 coupldot(1)=0.5*(rootP-1);

5 coupldot(2)=-0.25*rootP*P*coupl(3);

6 coupldot(3)=-4.5*coupldot(2)*P*coupl(3);

7 endfunction

The functions defined in Listings 12.2, 12.3, and 12.4 are called by program 12.1 to calculate the flow for different regulators and truncation orders.

Listing 12.4 Called by program 12.1: optimal regulator and 12th-order polynomial

1 function coupldot=flowOpt12(coupl,k)

2 a0=coupl(1);a2=coupl(2);a4=coupl(3);a6=coupl(4);

3 a8=coupl(5);a10=coupl(6);a12=coupl(7);

4 ks=k*k;numflow1

5 P=1/(ks+a2);P2=P*P;P2pi=ks*P2/pi;P3=P*P2;P4=P*P3;

6 a4s=a4*a4;a4q=a4s*a4s;a6s=a6*a6;

7 coupldot(1)=-a2*P/pi;

8 coupldot(2)=-a4;

9 coupldot(3)=-a6+6*a4s*P;

10 coupldot(4)=-a8+30*a4*a6*P-90*a4s*a4*P2;

11 coupldot(5)=-a10+(56*a4*a8+70*a6s)*P\

12 -1260*a6*a4s*P2+2520*a4q*P3;

13 coupldot(6)=-a12+(90*a4*a10+420*a6*a8)*P\

14  -(3780*a8*a4s+9450*a6s*a4)*P2\

15 +75600*a4s*a4*a6*P3-113400*a4q*a4*P4;

16 coupldot(7)=(132*a4*a12+924*a8*a8+990*a10*a6)*P\

17 -(8910*a10*a4s+83160*a4*a6*a8+34650*a6s*a6)*P2\

18 +(332640*a8*a4s*a4+1247400*a4s*a6s)*P3\

19 -6237000*a4q*a6*P4+7484400*a4q*a4s*(P4*P);

20 coupldot(2:7)=P2pi*coupldot(2:7);

21 endfunction

The octave function 12.5 solves the partial differential equation for the scale-dependent effective potential in (12.31). It calls the function defined in Listing 12.6.

Listing 12.5 Flow of effective potential in LPA

1 function flowpde(a4)

2  # Solves the partial differential equation for the

3  # flow of the effective potential by rewriting it

4  # as a system of coupled ode’s. Calls fa.m

5 global Nq;

6 global dqsquareinv;

7 global W;

8 Nq=151;L=5;Nk=800;

9 q=linspace(-L,L,Nq);

10 a2=-1;

11 qsquare=q.*q;

12 dq=2*L/(Nq-1);

13 dqsquareinv=1/(dq*dq);

14 k=linspace(800,0,Nk);

15 V=0.5*a2*qsquare+a4*qsquare.*qsquare/24;

16 Veff=lsode( "fa",V,k);

17 u=Veff(Nk,:);

18 plot(q,V, ’r’,q,u, ’b’)

19 legend( ’Vclass’, ’Veff’);

20 [umin,index]=min(u);

21 upp=(u(index+1)+u(index-1)-2*u(index))*dqsquareinv;

22 printf( "\nE0 = %4.4f\nE1 = %4.4f \n",umin,umin+sqrt(upp));

23 endfunction

Listing 12.6 Called by program 12.5: right-hand side of ode

1 function xdot=fa(V,x)

2 global dqsquareinv;

3 global Nq;

4 global W;

5 xs=x*x;

6 W=dqsquareinv*(shift(V,1)+shift(V,-1)-2*V);

7 xdot=(xs./(xs+W)-1)/pi;

8 xdot(1)=0;

9 xdot(Nq)=0;

10 endfunction

12.9 Problems

12.1 (Weak-Coupling Expansion for Anharmonic Oscillator)

In this exercise we solve the truncated flow equations (12.35) for weak couplings λω 3 ≪ 1. First we introduce dimensionless variables:

$$\displaystyle \begin{aligned} x=\frac{k}{\omega},\quad e_k=\frac{E_k}{\omega},\quad o_k=\frac{\omega_k}{\omega}\quad \mbox{{and}}\quad \ell_k=\frac{\lambda_k}{24\omega^3}\;. \end{aligned}$$
  1. (a)

    Show that the truncated flow equations for the dimensionless variables read

    $$\displaystyle \begin{aligned} \frac{d e_k}{dx}=-\frac{o_k^2}{\pi}\frac{1}{x^2+o_k^2},\quad \frac{d o^2_k}{dx}=-\frac{\ell_k}{\pi} \frac{24 x^2}{(x^2+o_k^2)^2},\quad \frac{d \ell_k}{dx}=\frac{144\ell_k^2}{\pi}\frac{x^2}{(x^2+o_k^2)^3} \;. \end{aligned}$$
  2. (b)

    For the harmonic oscillator with vanishing λ, we have e k = 1∕2, o k = 1, and k = 0. The initial conditions are e x = 0, o x = 1, and x = λ∕24ω 3. Thus for weak coupling the expansion has the form

    $$\displaystyle \begin{aligned} \begin{array}{rcl} e_k& =&\displaystyle \alpha_0+\alpha_1\varepsilon+\alpha_2\varepsilon^2+\dots\\ o^2_k& =&\displaystyle \;\;1+\beta_1\varepsilon+\beta_2\varepsilon^2+\dots\\ \ell_k& =&\displaystyle \hskip10.5mm\varepsilon+\gamma_2\varepsilon^2+\dots \end{array} \end{aligned} $$

    with ε = λ∕24ω 3 ≪ 1 and scale-dependent coefficient functions. Show that these functions satisfy the differential equations

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \dot\alpha_0& =&\displaystyle -\frac{P}{\pi},\quad \dot\alpha_1=-\frac{x^2P^2}{\pi} \beta_1,\quad \dot\alpha_2=\frac{x^2P^2}{\pi}\left(\beta_1^2P-\beta_2\right)\\ \dot\beta_1& =&\displaystyle -\frac{24x^2P^2}{\pi},\qquad \dot \beta_2=\frac{24x^2P^2}{\pi}\left(2\beta_1 P-\gamma_2\right),\quad \dot\gamma_2=144\frac{x^2P^3}{\pi}\;, \end{array} \end{aligned} $$

    where we defined P ≡ 1∕(1 + x 2). The coefficient functions vanish for x →, and the first differential equation has the solution \(\alpha (x)=1/2-\arctan (x)/\pi \).

  3. (c)

    Calculate β 1, γ 2, and β 2 with an algebraic computer program. Insert the solutions to find the functions α 2 and α 3.

  4. (d)

    Prove that the coefficient functions have the following small-x expansions:

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \alpha_0(x)& \sim&\displaystyle \frac{1}{2}-\frac{1}{\pi}x+\frac{1}{3\pi}x^3+\dots \\ \alpha_1(x)& \sim&\displaystyle \frac{3}{4}-2\pi x^3+\dots\\ \alpha_2(x)& \sim&\displaystyle -\frac{3}{8}\left(10-\frac{29}{\pi^2}\right) +8\left(3-\frac{4}{\pi^2}\right)x^3+\dots{}\\ \beta_1(x)& \sim&\displaystyle 6-\frac{8}{\pi}x^3+\dots\\ \beta_2(x)& \sim&\displaystyle -12\left(3-\frac{8}{\pi^2}\right)+\frac{168}{\pi}x^3+\dots\\ \gamma_2(x)& \sim&\displaystyle -9+\frac{48}{\pi}x^3+\dots \end{array} \end{aligned} $$
    (12.114)
  5. (e)

    If we make a cruder truncation with λ k = λ of equivalently with γ 2 = 0, how do the results change? Prove that in this case

    $$\displaystyle \begin{aligned} \begin{array}{rcl} \alpha_2(x)& \sim&\displaystyle -\frac{3}{16}\left(8+\frac{29}{\pi^2}\right) +\frac{1}{\pi^3}(15\pi^2+16)x^3+\dots{}\\ \beta_2(x)& \sim&\displaystyle -2\left(3+\frac{16}{\pi^2}\right) +\frac{96}{\pi}x^3+\dots \end{array} \end{aligned} $$
    (12.115)

12.2 (Fixed Point Solution and Critical Exponents)

Write a program with your favorite algebraic computer system to find the fixed point solution and the critical exponents of the Z 2 scalar field theory. You should be able to reproduce the plots in Fig. 12.5 and the critical exponents in Table 12.4.

Appendix: A Momentum Integral

In this appendix we calculate the O(p 2) contribution to the integral

$$\displaystyle \begin{aligned} F(p)=\int \mathrm{d}^d q\,\partial_k\left\{Z_kR_k(q)\right\} \, G^2_0(q)\,G_0(p+q){} \end{aligned} $$
(12.116)

for the optimized regulator function (12.10). The integrand is only nonzero for q 2 ≤ k 2 and in this region

$$\displaystyle \begin{aligned} \partial_k\left\{Z_kR_k(q)\right\}\,G^2_0(q)=\left(\left(k^2-q^2\right)\partial_k Z_k+2kZ_k\right) \varDelta_0^2\;.{} \end{aligned} $$
(12.117)

To proceed we need to consider two cases: |p + q|≤ k and |p + q| > k separately.

The Case |p + q| < k

This is the region located inside of both spheres in Fig. 12.11 where the Green function G 0(q) = G 0(p + q) = Δ 0 is independent of the integration variable q. Let us decompose this variable as q = q  + q , where q is parallel and q perpendicular to the fixed momentum p. Then the integral has the form

$$\displaystyle \begin{aligned} I_1=\mbox{Vol}\left(S_{d-2}\right)\varDelta_0^3 \int \mathrm{d} q_\parallel \int \mathrm{d}\vert\, q_\perp\vert\, \vert q_\perp\vert^{d-2} \left(\left(k^2-q^2\right)\partial_k Z_k+2kZ_k\right)\;,{} \end{aligned} $$
(12.118)
Fig. 12.11
figure 11

Sketch of the integration regions in momentum space. Only momenta inside of the ball centered at the origin contribute to the integral. The Green functions are constant in the gray region inside of both spheres. Inside the sickle-shaped light-gray region, G 0(p, q) is momentum dependent. The two spheres intersect at the lower-dimensional sphere defined by \(\{q_\parallel ^*,q_\perp ^* \}=\{-p/2,k^2-p^2/4\}\)

where \(q^2=q_\parallel ^2+q_\perp ^2\). The volume of the unit sphere originates from the integration over the directions of q . Now we split the integration domain inside of both spheres, the region marked gray in Fig. 12.11, into two spherical caps:

$$\displaystyle \begin{aligned} \begin{array}{rcl} -k\leq q_\parallel<-\frac{p}{2} \quad & \mbox{and}&\displaystyle \quad 0\leq q^2_\perp\leq k^2-q_\parallel^2\\ -\frac{p}{2}\leq q_\parallel<k-p \quad & \mbox{and}&\displaystyle \quad 0\leq q^2_\perp\leq k^2-(p+q_\parallel)^2\;. \end{array} \end{aligned} $$

The domain of integration in (12.118) is just the union of these two caps. After a shift q → q − p in the integral over the second cap, we are left with the one-dimensional integral

$$\displaystyle \begin{aligned} &\frac{\mbox{Vol}\left(S_{d-2}\right)\varDelta_0^3}{d-1}\int_{p/2}^k \!\!\mathrm{d} q_\parallel \left\{\left(\frac{4k^2-4q_\parallel^2}{d+1}+2q_\parallel p-p^2\right) \partial_k Z_k +4kZ_k\right\}\\ &\quad \times \left(k^2-q_\parallel^2\right)^{(d-1)/2}\;. \end{aligned} $$

Its second derivative with respect to p at p = 0 is

$$\displaystyle \begin{aligned} \frac{\mathrm{d}^2 I_1}{\mathrm{d} p^2}\Big\vert_{p=0}=-k^dV(B_d)\,\varDelta_0^3\,\partial_k Z_k\;.{} \end{aligned} $$
(12.119)

The Case |p + q| < k

This is the sickle-shaped region inside of the sphere centered at the origin but outside the displaced sphere, marked light-gray in Fig. 12.11. The integral over this region can be written as a difference of two integrals as follows:

$$\displaystyle \begin{aligned} I_2&=\varDelta_0^2\; \left(\int_{-p/2}^k \mathrm{d} q_\parallel\!\! \int_{0}^{\sqrt{k^2-q_\parallel^2}}\mathrm{d} q_\perp \,h\left(q_\parallel,q_\perp\right) \right.\\ & \quad \left.-\int_{-p/2}^{k-p} \mathrm{d} q_\parallel\!\! \int_{0}^{\sqrt{k^2-(q_\parallel+p)^2}}\mathrm{d} q_\perp \,h\left(q_\parallel,q_\perp\right)\right)\;. \end{aligned} $$

The integrand of both integrals is

$$\displaystyle \begin{aligned} h(q_\parallel,q_\perp)=\frac{\left(k^2-q_\parallel^2-q_\perp^2\right)\partial_k Z_k +2kZ_k}{Z_k(q_\parallel+p)^2+Z_k q_\perp^2+a_2}\;. \end{aligned}$$

It is convenient to shift the variable q in the second integral by − p such that

$$\displaystyle \begin{aligned} I_2&=\varDelta_0^2\,\left( \int_{-p/2}^k \mathrm{d} q_\parallel\!\! \int_{0}^{\sqrt{k^2-q_\parallel^2}}\mathrm{d} q_\perp \,h\left(q_\parallel,q_\perp\right)\right.\\ & \quad \left.-\int_{p/2}^k \mathrm{d} q_\parallel\!\! \int_{0}^{\sqrt{k^2-q_\parallel^2}}\mathrm{d} q_\perp \,h\left(q_\parallel-p,q_\perp\right)\right)\;. \end{aligned} $$

The second derivative of this integral with respect to p at p = 0 is given by

$$\displaystyle \begin{aligned} \frac{\mathrm{d}^2 I_2}{\mathrm{d} p^2}\Big\vert_{p=0}=k^dV(B_d)\,\varDelta_0^4 \left(a\partial_k Z_k+k^2 Z_k\partial_k Z_k-2kZ_k^2\right)\;.{} \end{aligned} $$
(12.120)

Adding the two results (12.119) and (12.120) leads to the simple expression,

$$\displaystyle \begin{aligned} \frac{\mathrm{d}^2 F}{\mathrm{d} p^2}\Big\vert_{p=0}=-2k^{d+1}V(B_d)\,\varDelta_0^4\, Z^2_k\;{} \end{aligned} $$
(12.121)

for the curvature of F(p) in (12.116) at the origin in momentum space.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Functional Renormalization Group. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_12

Download citation

Publish with us

Policies and ethics