Skip to main content

Approaches Based on the Ising Model

  • Chapter
  • First Online:
Machine Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

  • 4065 Accesses

Abstract

In this chapter, we explore two approaches that link quantum machine learning to the Ising model. First, we will look at probabilistic models that emerge when we take a Boltzmann machine and add quantum dynamics to the underlying physical system. We then discuss proposals for quantum machine learning with quantum annealers, which are devices that solve optimisation problems with an Ising-type energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we simplified the original expression in [8] to be consistent with the more common definition of the log-likelihood introduced in Sect. 2.4.

References

  1. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91(4), 045002 (2019)

    Google Scholar 

  2. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    Google Scholar 

  3. Seung, H.S., Sompolinsky, H., Tishby, N.: Statistical mechanics of learning from examples. Phys. Rev. A 45(8), 6056 (1992)

    Google Scholar 

  4. Zdeborová, L., Krzakala, F.: Statistical physics of inference: thresholds and algorithms. Adv. Phys. 65(5), 453–552 (2016)

    Article  Google Scholar 

  5. Agliari, E., Barra, A., Sollich, P., Zdeborová, L.: Machine learning and statistical physics: preface. J. Phys. Math. Theor. 53, 500401 (2020)

    Google Scholar 

  6. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–606 (2017)

    Article  MathSciNet  Google Scholar 

  7. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018 (1985)

    Google Scholar 

  8. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018)

    Google Scholar 

  9. Kieferova, M., Wiebe, N.: Tomography and generative data modeling via quantum Boltzmann training. Phys. Rev. A 96, 062327 (2017)

    Google Scholar 

  10. Inoue, J.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63(4), 046114 (2001)

    Google Scholar 

  11. Shcherbina, M., Tirozzi, B.: Quantum Hopfield model (2012). arXiv:1201.5024v1

  12. Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780–3796 (1996)

    Article  MathSciNet  Google Scholar 

  13. Inoue, J.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Series 297, 012012 (IOP Publishing, 2011)

    Google Scholar 

  14. Rotondo, P., Marcuzzi, M., Garrahan, J.P., Lesanovsky, I., Müller, M.: Open quantum generalisation of Hopfield neural networks. J. Phys. A Math. Theor. 51(11), 115301 (2018)

    Google Scholar 

  15. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press (2002)

    Google Scholar 

  16. Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)

    Google Scholar 

  17. Rnnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345, 420–424 (2014)

    Google Scholar 

  18. Gorman, B.O., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Special Topics 224(1), 163–188 (2015)

    Google Scholar 

  19. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer i: mapping to quadratic unconstrained binary optimization (2008). arXiv preprint arXiv:0804.4457

  20. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12(5), 2027–2070 (2013)

    Google Scholar 

  21. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Qboost: large scale classifier training with adiabatic quantum optimization. In: Asian Conference on Machine Learning (ACML), pp. 333–348 (2012)

    Google Scholar 

  22. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a large scale classifier with the quantum adiabatic algorithm (2009). arXiv preprint arXiv:0912.0779

  23. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a binary classifier with the quantum adiabatic algorithm (2008). arXiv preprint arXiv:0811.0416

  24. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1 (2016). arXiv preprint arXiv:1602.02830

  25. Denchev, V., Ding, N., Neven, H., Vishwanathan, S.: Robust classification with adiabatic quantum optimization. In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 863–870 (2012)

    Google Scholar 

  26. Denil, M., De Freitas, N.: Toward the implementation of a quantum RBM. In: NIPS 2011 Deep Learning and Unsupervised Feature Learning Workshop (2011)

    Google Scholar 

  27. Korenkevych, D., Xue, Y., Bian, Z., Chudak, F., Macready, W.G., Rolfe, J., Andriyash, E.: Benchmarking quantum hardware for training of fully visible Boltzmann machines (2016). arXiv preprint arXiv:1611.04528

  28. Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks (2015). arXiv preprint arXiv:1510.06356

  29. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev. A 94(2), 022308 (2016)

    Google Scholar 

  30. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Quantum-assisted learning of hardware-embedded probabilistic graphical models. Phys. Rev. X 7, 041052 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2021). Approaches Based on the Ising Model. In: Machine Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-83098-4_8

Download citation

Publish with us

Policies and ethics