Skip to main content

Fault-Tolerant Quantum Machine Learning

  • Chapter
  • First Online:
Machine Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

  • 4032 Accesses

Abstract

Here, we focus on more traditional approaches to quantum machine learning which try to speed up classical routines by making use of fault-tolerant quantum computers. We discuss quantum machine learning algorithms based on linear algebra subroutines such as matrix inversion, and those based on amplitude amplification or Grover search. We will then have a look at how classical probabilistic models like Bayesian nets and Boltzmann machines can be implemented on a quantum computer, and finish with an idea of how to use superposition to represent ensembles of classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An assumption that allows us to omit that the bounds also depend on the norm.

References

  1. Rebentrost P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum hopfield neural network. Phys. Rev. A 98(4), 042308 (2018)

    Google Scholar 

  2. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015)

    Article  Google Scholar 

  3. Tang, E.: A quantum-inspired classical algorithm for recommendation systems. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 217–228 (2019)

    Google Scholar 

  4. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5) (2012)

    Google Scholar 

  5. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2) (2016)

    Google Scholar 

  6. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 (2014)

    Google Scholar 

  7. Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum assisted Gaussian process regression (2015). arXiv:1512.03929

  8. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 792–809. IEEE (2015)

    Google Scholar 

  9. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96 (2017)

    Google Scholar 

  10. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  11. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Article  Google Scholar 

  12. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18 (2016)

    Google Scholar 

  13. Kerenedis, I., Prakash, A.: Quantum recommendation systems. In: Kerenidis, I., Prakash, A. (eds.) Quantum Recommendation Systems. LIPIcs-Leibniz International Proceedings in Informatics, vol. 67 (2017)

    Google Scholar 

  14. Wiebe, N., Kapoor, A., Svore, K.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15, 0318–0358 (2015)

    Google Scholar 

  15. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  17. Dürr, C., Hoyer, P.: A quantum algorithm for finding the minimum (1996). arXiv:quant-ph/9607014v2

  18. Kapoor, A., Wiebe, N., Svore, K.: Quantum perceptron models. In: Advances in Neural Information Processing Systems, pp. 3999–4007 (2016)

    Google Scholar 

  19. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Randomization and Approximation Techniques in Computer Science, pp. 164–178. Springer (2002)

    Google Scholar 

  20. Kendon, V.: Decoherence in quantum walks: a review. Math. Struct. Comput. Sci. 17, 1169–1220 (2007)

    Google Scholar 

  21. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  Google Scholar 

  22. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Google Scholar 

  23. Wang, J., Manouchehri, K.: Physical Implementation of Quantum Walks. Springer (2013)

    Google Scholar 

  24. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65, 032310 (2002)

    Google Scholar 

  25. Wong, T.G.: Equivalence of Szegedy’s and coined quantum walks. Quantum Inf. Process. 16(9), 215 (2017)

    Google Scholar 

  26. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41. IEEE (2004)

    Google Scholar 

  27. Loke, T., Wang, J.B.: Efficient quantum circuits for Szegedy quantum walks. Ann. Phys. 382, 64–84 (2017)

    Article  MathSciNet  Google Scholar 

  28. Paparo, G.D., Martin-Delgado, M.A.: Google in a quantum network. Sci. Rep. 2 (2012)

    Google Scholar 

  29. Paparo, G.D., Dunjko, V., Makmal, A., Martin-Delgado, M.A., Briegel, H.J.: Quantum speedup for active learning agents. Phys. Rev. X 4(3), 031002 (2014)

    Google Scholar 

  30. Loke, T., Tang, J.W., Rodriguez, J., Small, M., Wang, J.B.: Comparing classical and quantum pageranks. Quantum Inf. Process. 16(1), 25 (2017)

    Google Scholar 

  31. Briegel, H.J., De las Cuevas, G.: Projective simulation for artificial intelligence. Sci. Rep. 2, 1–16 (2012)

    Google Scholar 

  32. Kempe, J.: Quantum random walks hit exponentially faster. Probab. Theory Relat. Fields 133, 215–235 (2005)

    Article  Google Scholar 

  33. Yoder, T.J., Low, G.H., Chuang, I.L.: Quantum inference on Bayesian networks. Phys. Rev. A 89, 062315 (2014)

    Google Scholar 

  34. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory (TOCT) 5(3), 11 (2013)

    Google Scholar 

  35. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning (2014). arXiv:1412.3489v1

  36. Wittek, P., Gogolin, C.: Quantum enhanced inference in Markov logic networks. Sci. Rep. 7 (2017)

    Google Scholar 

  37. Brandão, F.G.S.L., Svore, K.M.: Quantum speed-ups for solving semidefinite programs. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 415–426. IEEE (2017)

    Google Scholar 

  38. Poulin, D., Wocjan, P.: Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103(22) (2009)

    Google Scholar 

  39. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press (2002)

    Google Scholar 

  40. Monras, A., Beige, A., Wiesner, K.: Hidden quantum Markov models and non-adaptive read-out of many-body states. Appl. Math. Comput. Sci. 3 (2011)

    Google Scholar 

  41. Barry, J., Barry, D.T., Aaronson, S.: Quantum partially observable Markov decision processes. Phys. Rev. A 90 (2014)

    Google Scholar 

  42. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  43. Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R.W., Resch, K.J.: A quantum advantage for inferring causal structure. Nat. Phys. 11(5), 414–420 (2015)

    Google Scholar 

  44. Brukner, Č.: Quantum causality. Nat. Phys. 10(4) (2014)

    Google Scholar 

  45. Costa, F., Shrapnel, S.: Quantum causal modelling. New J. Phys. 18 (2016)

    Google Scholar 

  46. Schuld, M., Petruccione, F.: Quantum ensembles of quantum classifiers. Sci. Rep. 8(1), 2772 (2018)

    Google Scholar 

  47. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Google Scholar 

  48. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  49. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  50. Minka, T.P.: Bayesian model averaging is not model combination (2000). Comment available electronically at http://www.stat.cmu.edu/minka/papers/bma.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2021). Fault-Tolerant Quantum Machine Learning. In: Machine Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-83098-4_7

Download citation

Publish with us

Policies and ethics