Skip to main content

Variational Circuits as Machine Learning Models

  • Chapter
  • First Online:
Machine Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

Abstract

We explain how parametrised quantum circuits—quantum algorithms that are popular in near-term quantum computing—can be used as machine learning models, and review techniques to analyse and train such quantum models in a deep-learning fashion, including measures of expressivity and trainability, as well as parameter-shift rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the same reason why classical machine learning can use one data sample in each step of stochastic gradient descent.

  2. 2.

    Such an angle encoded qubit has been called a quron [44] in the context of quantum neural networks.

  3. 3.

    Thanks to Gian Giacomo Guerrschi for this simplified presentation.

References

  1. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms (2020). arXiv:2012.09265

  2. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors (2018). arXiv:1802.06002

  3. Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit-centric quantum classifiers (2018). arXiv:1804.00633

  4. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. NPJ Quantum Inf. 5(1), 1–9 (2019)

    Article  Google Scholar 

  5. Behrman, E.C., Nash, L.R., Steck, J.E., Chandrashekar, V.G., Skinner, S.R.: Simulations of quantum neural networks. Inf. Sci. 128(3–4), 257–269 (2000)

    Article  MathSciNet  Google Scholar 

  6. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)

    Google Scholar 

  7. Magann, A.B., Arenz, C., Grace, M.D., Ho, T.-S., Kosut, R.L., McClean, J.R., Rabitz, H.A., Sarovar, M.: From pulses to circuits and back again: a quantum optimal control perspective on variational quantum algorithms (2020). arXiv:2009.06702

  8. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning (2020). arXiv:2001.03622

  9. PĂ©rez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020)

    Article  Google Scholar 

  10. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus (2021). arXiv:2101.02138

  11. Cheng, S., Chen, J., Wang, L.: Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy 20(8), 583 (2018)

    Article  Google Scholar 

  12. Vidal, J.G., Theis, D.O.: Input redundancy for parameterized quantum circuits (2019). arXiv:1901.11434

  13. Schuld, M., Sweke, R., Meyer, J.J.: The effect of data encoding on the expressive power of variational quantum machine learning models (2020). arXiv:2008.08605

  14. Ostaszewski, M., Grant, E., Benedetti, M.: Quantum circuit structure learning (2019). arXiv:1905.09692

  15. Guerreschi, G.G., Smelyanskiy, M.: Practical optimization for hybrid quantum-classical algorithms (2017). arXiv:1701.01450

  16. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Google Scholar 

  17. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning (2018). arXiv:1803.00745

  18. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019)

    Google Scholar 

  19. Mari, A., Bromley, T.R., Killoran, N.: Estimating the gradient and higher-order derivatives on quantum hardware (2020). arXiv:2008.06517

  20. Banchi, L., Crooks, G.E.: Measuring analytic gradients of general quantum evolution with the stochastic parameter shift rule (2020). arXiv:2005.10299

  21. Sweke, R., Wilde, F., Meyer, J.J., Schuld, M., Fährmann, P.K., Meynard-Piganeau, B., Eisert, J.: Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4, 314 (2020)

    Article  Google Scholar 

  22. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 1–6 (2018)

    Article  Google Scholar 

  23. Cerezo, M., Coles, P.J.: Impact of barren plateaus on the hessian and higher order derivatives (2020). arXiv:2008.07454

  24. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost-function-dependent barren plateaus in shallow quantum neural networks (2020). arXiv:2001.00550

  25. Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., Coles, P.J.: Noise-induced barren plateaus in variational quantum algorithms (2020). arXiv:2007.14384

  26. Marrero, C.O., Kieferová, M., Wiebe, N.: Entanglement induced barren plateaus (2020). arXiv:2010.15968

  27. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)

    Google Scholar 

  28. Puchała, Z., Miszczak, J.A.: Symbolic integration with respect to the Haar measure on the unitary group in mathematica. Technical report (2011)

    Google Scholar 

  29. Liu, J.-G., Wang, L.: Differentiable learning of quantum circuit born machines. Phys. Rev. A 98(6), 062324 (2018)

    Google Scholar 

  30. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Dallaire-Demers, P.-L., Killoran, N.: Quantum generative adversarial networks. Phys. Rev. A 98(1), 012324 (2018)

    Google Scholar 

  32. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)

    Google Scholar 

  33. Romero, J., Aspuru-Guzik, A.: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions (2019). arXiv:1901.00848

  34. Kiani, B.T., De Palma, G., Marvian, M., Liu, Z.-W., Lloyd, S.: Quantum earth mover’s distance: a new approach to learning quantum data (2021). arXiv:2101.03037

  35. Cao, Y., Guerreschi, G.G., Aspuru-Guzik, A.: Quantum neuron: an elementary building block for machine learning on quantum computers (2017). arXiv:1711.11240

  36. Torrontegui, E., GarcĂ­a-Ripoll, J.J.: Unitary quantum perceptron as efficient universal approximator. EPL (Europhys. Lett.) 125(3), 30004 (2019)

    Google Scholar 

  37. Yamamoto, A.Y., Sundqvist, K.M., Li, P., Harris, H.R.: Simulation of a multidimensional input quantum perceptron. Quantum Inf. Process. 17(6), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  38. Schuld, M., Sinayskiy, I., Petruccione, F.: How to simulate a perceptron using quantum circuits. Phys. Lett. A 379, 660–663 (2015)

    Article  Google Scholar 

  39. Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1(3), 033063 (2019)

    Google Scholar 

  40. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks (2013). arXiv:1312.6120

  41. Tommiska, M.T.: Efficient digital implementation of the sigmoid function for reprogrammable logic. IEE Proc. Comput. Digit. Tech. 150(6), 403–411 (2003)

    Article  Google Scholar 

  42. Quine, W.V.: A way to simplify truth functions. Am. Math. Mon. 62(9), 627–631 (1955)

    Article  MathSciNet  Google Scholar 

  43. McCluskey, E.J.: Minimization of Boolean functions. Bell Labs Tech. J. 35(6), 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  44. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  MathSciNet  Google Scholar 

  45. Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. Quantum Inf. Comput. 14, 1277–1301 (2013)

    MathSciNet  Google Scholar 

  46. Wiebe, N., Kliuchnikov, V.: Floating point representations in quantum circuit synthesis. New J. Phys. 15(9), 093041 (2013)

    Google Scholar 

  47. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)

    Google Scholar 

  48. Rahimi, A., Recht, B., et al.: Random features for large-scale kernel machines. In: NIPS, vol. 3, p. 5. Citeseer (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2021). Variational Circuits as Machine Learning Models. In: Machine Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-83098-4_5

Download citation

Publish with us

Policies and ethics