Skip to main content

Further Propagation of Antarctic Bottom Water from the Brazil Basin

  • Chapter
  • First Online:
Book cover Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic Ocean

Abstract

We analyze the flow of Antarctic Bottom Water in the Brazil Basin and the flow of bottom water from the Guiana Basin through the westward equatorial channels into the North American Basin. Much consideration is related to the eastward flow in the equatorial fracture zones in the Mid-Atlantic Ridge: the Romanche and Chain fracture zones. A special region for analysis is the inflow of Antarctic Bottom Water into the western part of the Romanche Fracture Zone at 22°30′ W where a deep spillway is formed. This region is the beginning of the bottom water flow in the Romanche Fracture Zone. The bottom water flows into the fracture over two sills: one with a depth of 4430 m in the narrow main channel of the fracture (3.5 km wide along the 4000 m isobath) and another with a depth of 4570 m in the gap of the Southern Wall of the fracture (8.8 km wide along the 4000 m isobath). We also analyze overflows in the region of the main sills of the equatorial channels and outflow of Antarctic Bottom Water to the Guinea Basin. Analysis is based on the CTD casts combined with LADCP profiles, and a mooring deployed in the region. We assume Wüst’s (1936) definition of Antarctic Bottom Water propagation. In other words, this is the bottom water of Antarctic rather than North Atlantic origin. However, there is no generally accepted isotherm or value of any characteristics in literature for the upper boundary of Antarctic Bottom Water in the Equatorial and North Atlantic. Therefore, it is essential that quantitative estimates of Antarctic Bottom Water properties and transport depend on the choice of this boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrie C, Ternon JF, Messias MJ, Memery L, Bourlès B (1998) Chlorofluormethane distribution in the deep equatorial Atlantic during January-March 1993. Deep-Sea Res I 45:903–930

    Google Scholar 

  • Atkinson CP, Bryden HL, Cunningham SA, King BA (2012) Atlantic transport variability at 25° N in six hydrographic sections. Ocean Sci 8:497–523. https://doi.org/10.5194/os-8-497-2012

    Article  Google Scholar 

  • Bacmeister JT, Pierrehumbert RT (1988) On high drag states of nonlinear stratified flow over an obstacle. J Atmos Sci 45:63–80

    Google Scholar 

  • Boyer TP, Baranova OK, Coleman C, Garcia HE, Grodsky A, Locarnini RA, Mishonov AV, Paver CR, Reagan JR, Seidov D, Smolyar IV, Weathers K, Zweng MM (2018) World Ocean Database 2018. AV Mishonov, Technical Ed., NOAA Atlas NESDIS 87. https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf

  • Bryden HL, Nurser AJG (2003) Effect of strait mixing on ocean stratification. J Phys Oceanogr 33(8):1870–1872. https://doi.org/10.1175/1520-0485(2003)033<1870:EOSMOO>2.0.CO;2

    Article  Google Scholar 

  • Cai W, Greatbatch R (1995) Compensation for the NADW outflow in a global ocean general circulation model. J Phys Oceanogr 25(2):226–241

    Google Scholar 

  • Clarke RA, Gascard JC (1983) The formation of Labrador Sea water, part I: large-scale processes. J Phys Oceanogr 13(10):1764–1778

    Google Scholar 

  • Clément L, Thurnherr AM, St Laurent LC (2017) Turbulent mixing in a deep fracture zone on the mid-Atlantic ridge. J Phys Oceanogr 47(8):1873–1896. https://doi.org/10.1175/JPO-D-16-0264.1

    Article  Google Scholar 

  • De Madron XD, Weatherly G (1994) Circulation, transport and bottom boundary layers of the deep currents in the Brazil Basin. J Mar Res 52:583–638

    Google Scholar 

  • Demidov AN (2003) Distinguishing the intermediate and deep water masses in the South Atlantic. Oceanology 43:153–163

    Google Scholar 

  • Demidov AN, Morozov EG, Neiman VG (2006) Structure and variability of deep waters in the Romanche fracture zone. Doklady Earth Sci 410:1136–1140. https://doi.org/10.1134/S1028334X06070300

    Article  Google Scholar 

  • Dobrovolsky AD, Zalogin BS (1992) Regional oceanography. MGU Publishers, Moscow. [in Russian]

    Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    Article  Google Scholar 

  • Evans GR, McDonagh EL, King BA, Bryden HL et al (2017) South Atlantic interbasin exchanges of mass, heat, salt and anthropogenic carbon. Prog Oceanogr 151:62–82. https://doi.org/10.1016/j.pocean.2016.11.005

    Article  Google Scholar 

  • Ferron B, Mercier H, Speer K, Gargett A, Polzin K (1998) Mixing in the Romanche fracture zone. J Phys Oceanogr 28:1929–1945. https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2

    Article  Google Scholar 

  • Fischer J, Rhein M, Schott F, Stramma L (1996) Deep water masses and transports in the Vema fracture zone. Deep-Sea Res I 43(7):1067–1074

    Google Scholar 

  • Frajka-Williams E, Ansorge IG, Baehr J, Bryden HL, Paz Chidichimo M, Cunningham SA et al (2019) Atlantic meridional overturning circulation: observed transport and variability. Frontiers Mar Science 6:260. https://doi.org/10.3389/fmars.2019.00260

    Article  Google Scholar 

  • Frey DI, Morozov EG, Fomin VV, Diansky NA, Tarakanov RY (2019) Regional modeling of Antarctic bottom water flows in the key passages of the Atlantic. J Geophys Res Oceans 124(11):8414. https://doi.org/10.1029/2019JC015315

    Article  Google Scholar 

  • Friedrichs MA, Hall MM (1993) Deep circulation in the tropical North Atlantic. J Mar Res 51(4):697–736

    Google Scholar 

  • Friedrichs MA, McCartney MS, Hall MM (1994) Hemispheric asymmetry of deep water transport modes in the western Atlantic. J Geophys Res Oceans 99(C12):25165–25179

    Google Scholar 

  • Fu LL (1981) The general circulation and meridional heat transport of the subtropical South Atlantic determined by inverse methods. J Phys Oceanogr 11(9):1171–1193

    Google Scholar 

  • Fu Y, Karstensen J, Brandt P (2018) Atlantic meridional overturning circulation at 14.5° N in 1989 and 2013 and 24.5° N in 1992 and 2015: volume, heat, and freshwater transports. Ocean Sci 14:589–616

    Google Scholar 

  • Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean circulation experiment (WOCE) hydrographic data. J Geophys Res Oceans 108(C7):3213. https://doi.org/10.1029/2002JC001565

    Article  Google Scholar 

  • Hall MM, McCartney MS, Whitehead JA (1997) Antarctic bottom water flux in the equatorial Western Atlantic. J Phys Oceanogr 27(9):1903–1926. https://doi.org/10.1175/1520-0485(1997)027<1903:ABWFIT>2.0.CO;2

    Article  Google Scholar 

  • Heezen B, Bunce E, Hersey J, Tharp M (1964) Chain and Romanche fracture zones. Deep Sea Res I 11:30–33. https://doi.org/10.1016/0011-7471(64)91079-4

    Article  Google Scholar 

  • Hernández-Guerra A, Pelegrí JL, Fraile-Nuez E, Benítez-Barrios V, Emelianov M, Pérez-Hernández MD, Vélez-Belchí P (2014) Meridional overturning transports at 7.5N and 24.5N in the Atlantic Ocean during 1992–93 and 2010–11. Prog Oceanogr 128:98–114. https://doi.org/10.1016/j.pocean.2014.08.016

  • Hernández-Guerra A, Talley LD, Pelegríc JL, Vélez-Belchíd P, Baringer MO, Macdonald AM, McDonagh EL (2019) The upper, deep, abyssal and overturning circulation in the Atlantic Ocean at 30°S in 2003 and 2011. Progr Oceanogr 176:102136

    Google Scholar 

  • Hogg NG, Owens WB (1999) Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res II 46:335–353

    Google Scholar 

  • Hogg N, Siedler G, Zenk W (1999) Circulation and variability at the southern boundary of the Brazil Basin. J Phys Oceanogr 29:145–157

    Google Scholar 

  • Holfort J, Siedler G (2001) The meridional oceanic transport of heat and nutrients in the South Atlantic. J Phys Oceanogr 31(1):5–28

    Google Scholar 

  • Kapustina MV, Dorokhov DV, Sivkov VV (2021) Multibeam bathymetry data of the western part of the Romanche trench (equatorial Atlantic). Data in Brief (in press)

    Google Scholar 

  • Kinder TH, Bryden HL (1990) The aspiration of deep waters through straits. In: Pratt LJ (ed) The physical oceanography of Sea Straits. Kluwer Academic Publ, Netherlands, pp 295–319

    Google Scholar 

  • Klein B, Molinari RL, Muller TJ, Seidler G (1995) A transatlantic section at 14.5°N: meridional volume and heat fluxes. J Mar Res 53:929–957

    Google Scholar 

  • Larque L, Maamaatuaiahutapu K, Garcon VC (1997) On the intermediate and deep-water flow in the South Atlantic Ocean. J Geophys Res Oceans 102(C6):12425–12440

    Google Scholar 

  • Lavin AM, Bryden HL, Parrilla G (2003) Mechanisms of heat, freshwater, oxygen and nutrient transports and budgets at 24.5° N in the subtropical North Atlantic. Deep-Sea Res I 50:1099–1128

    Google Scholar 

  • Leontieva VV (1985) Hydrology of trenches in the World Ocean. Nauka, Moscow. [in Russian]

    Google Scholar 

  • Liapidevsky VY (2004) Mixed layer at the lee side of an obstacle. J Appl Mechanics Technical Physics 45(2):62–67

    Google Scholar 

  • Limeburner R, Whitehead JA, Cenedese C (2005) Variability of Antarctic bottom water flow into the North Atlantic. Deep Sea Res II 52:495–512. https://doi.org/10.1016/j.dsr2.2004.12.012

    Article  Google Scholar 

  • Lozovatsky ID, Morozov EG, Fernando HJS (2003) Spatial decay of energy density of tidal internal waves. J Geophys Res Oceans 108(6):3201–3216. https://doi.org/10.1029/2001JC001169

    Article  Google Scholar 

  • Luyten J, McCartney MS, Stommel H, Dickson R, Gmitrowicz E (1993) On the sources of North Atlantic deep water. J Phys Oceanogr 23:1885–1892

    Google Scholar 

  • Macdonald A (1993) Property fluxes at 30° S and their implications for the Pacific-Indian throughflow and the global heat budget. J Geophys Res Oceans 98(4):6851–6868

    Google Scholar 

  • Macdonald A (1998) The global ocean circulation a hydrographic estimate and regional analysis. Prog Oceanogr 41:281–382

    Google Scholar 

  • Marchesiello P, Barnier B, de Miranda AP (1998) A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic. Pt II: meridional transports and seasonal cycle. Deep-Sea Res I 45:573–608

    Google Scholar 

  • Mamayev OI (1992) Abyssal waters of the World Ocean. IRO Publishers, Moscow. [in Russian]

    Google Scholar 

  • Mantyla AW, Reid JL (1983) Abyssal characteristics of the World Ocean waters. Deep-Sea Res I 30(8):805–833. https://doi.org/10.1016/0198-0149(83)90002-X

    Article  Google Scholar 

  • Marsh R, de Cuevas BA, Coward AC, Nurser AJG, Josey SA (2005) Water mass transformation in the North Atlantic over 1985-2002 simulated in an eddy-permitting model. Ocean Sci 1:127–144

    Google Scholar 

  • Matano RP, Philander SGH (1993) Heat and mass balances of the South Atlantic Ocean calculated from a numerical model. J Geophys Res 98:977–984

    Google Scholar 

  • McCartney MS, Bennet SL, Woodgate-Jones ME (1991) Eastward flow through the mid-Atlantic ridge at 11° N and its influence on the abyss of the eastern basin. J Phys Oceanogr 21(8):1089–1121. https://doi.org/10.1175/1520-0485(1991)021<1089:EFTTMA>2.0.CO;2

    Article  Google Scholar 

  • McCartney MS, Curry RA (1993) Trans-equatorial flow of Antarctic bottom water in the western Atlantic Ocean: abyssal geostrophy at the equator. J Phys Oceanogr 23:1264–1276

    Google Scholar 

  • McDonagh EL, King BA (2005) Oceanic fluxes in the South Atlantic. J Phys Oceanogr 35:109–122. https://doi.org/10.1175/JPO-2666.1

    Article  Google Scholar 

  • McDonagh ML, McLeod P, King BA, Bryden HL, Torres Valdéz S (2010) Circulation, heat, and freshwater transport at 36°N in the Atlantic. J Phys Oceanogr 40:2661–2678

    Google Scholar 

  • Mercier H, Morin P (1997) Hydrography of the Romanche and chain fracture zones. J Geophys Res Oceans 102(C5):10,373–10,389. https://doi.org/10.1029/97JC00229

    Article  Google Scholar 

  • Mercier H, Speer KG (1998) Transport of bottom water in the Romanche fracture zone and the chain fracture zone. J Phys Oceanogr 28(5):779–790. https://doi.org/10.1175/1520-0485(1998)028<0779:TOBWIT>2.0.CO;2

    Article  Google Scholar 

  • Mercier H, Speer KS, Honnorez J (1994) Romanche flow pathways of bottom water through the Romanche and Chain Fracture Zones. Deep-Sea Res 41(10):1457–1477. https://doi.org/10.1016/0967-0637(94)90055-8

  • Messias M-J, Andrie C, Memery L, Mercier H (1999) Tracing the North Atlantic deep water through the Romanche and chain fracture zones with chlorofluoromethanes. Deep-Sea Res I 46:1247–1278. https://doi.org/10.1016/S0967-0637(99)00005-9

    Article  Google Scholar 

  • Metcalf WG, Heezen BC, Stalcup MC (1964) The sill depth of the mid-Atlantic ridge in the equatorial region. Deep-Sea Res I 11:1–10

    Google Scholar 

  • Molinari RL, Fine RA, Johns E (1992) The deep Western boundary current in the tropical North Atlantic. Deep-Sea Res I 39:1967–1984

    Google Scholar 

  • Monin AS (1988) Theoretical principles of geophysical hydrodynamics. Gidrometeoizdat, Leningrad. [in Russian]

    Google Scholar 

  • Morozov EG, Demidov AN, Tarakanov RY (2008) Transport of Antarctic waters in the deep channels of the Atlantic Ocean. Dokl Earth Sci 423(8):1286–1289. https://doi.org/10.1134/S1028334X08080230

    Article  Google Scholar 

  • Morozov EG, Demidov AN, Tarakanov RY, Zenk W (2010) Abyssal channels in the Atlantic Ocean: water structure and flows. Springer, Dordrecht, 266 p. https://doi.org/10.1007/978-90-481-9358-5

    Book  Google Scholar 

  • Morris MY, Hall MM, St. Laurent LC, Hogg NG (2001) Abyssal mixing in the Brazil Basin. J Phys Oceanogr 31:3331–3348

    Google Scholar 

  • Nappo CJ (2002) An introduction to atmospheric gravity waves. Academic, San Diego, 247 p

    Google Scholar 

  • Naveira Garabato AC, Williams AP, Bacon S (2014) The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog Oceanogr 120:41–78

    Google Scholar 

  • Onken R (1995) The spreading of lower circumpolar water in the Atlantic Ocean. J Phys Oceanogr 25(12):3051–3063

    Google Scholar 

  • Polzin KL, Speer KG, Toole JM, Schmitt RW (1996) Intense mixing of Antarctic bottom water in the equatorial Atlantic Ocean. Nature 380:54–57. https://doi.org/10.1038/380054a0

    Article  Google Scholar 

  • Pratt LJ, Whitehead JA (2007) Rotating hydraulics: nonlinear topographic effects in the ocean and atmosphere. Springer, New York, 550 p. https://doi.org/10.1007/978-0-387-49572-9

    Book  Google Scholar 

  • Reid JL, Nowlin WD, Patzert WC (1977) On the characteristics and circulation of the southwestern Atlantic Ocean. J Phys Oceanogr 7(1):62–91

    Google Scholar 

  • Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: flow pattern, tracers and transports. Prog Oceanogr 23:149–244

    Google Scholar 

  • Rhein M, Stramma L, Send U (1995) The Atlantic deep western boundary current: water masses and transports near the equator. J Geophys Res Oceans 100:2441–2457

    Google Scholar 

  • Rhein M, Stramma L, Krahmann G (1998) The spreading of Antarctic bottom water in the tropical Atlantic. Deep-Sea Res I 45:507–527

    Google Scholar 

  • Rintoul SR (1991) South Atlantic interbasin exchange. J Geophys Res Oceans 96:2675–2692

    Google Scholar 

  • Roemmich D (1983) The balance of geostrophic and Ekman transports in the tropical Atlantic Ocean. J Phys Oceanogr 13(8):1534–1539

    Google Scholar 

  • Sandoval FJ, Weatherly GL (2001) Evolution of the deep western boundary current of Antarctic bottom water in the Brazil Basin. J Phys Oceanogr 31(6):1440–1460. https://doi.org/10.1175/1520-0485(2001)031<1440:EOTDWB>2.0.CO;2

    Article  Google Scholar 

  • Saunders PM, Thompson SR (1993) Transport, heat, and freshwater fluxes within a diagnostic numerical model (FRAM). J Phys Oceanogr 23:452–464

    Google Scholar 

  • Schlitzer R (1987) Renewal rates of East Atlantic deep water estimated by inversion of 14C data. J Geophys Res Oceans 92:2953–2980

    Google Scholar 

  • Schlitzer R (1996) Mass and heat transports in the South Atlantic derived from historical hydrographic data. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer-Verlag, pp 83–104

    Google Scholar 

  • Schmitz WJ (1996) On the World Ocean circulation: Volume I, Some global features. North Atlantic circulation (Technical report WHOI–96–03). Woods hole: Woods Hole Oceanographic Institution 142 p

    Google Scholar 

  • Schott FA, Dengler M, Brandt P, Affler K et al (2003) The zonal currents and transports at 35° W in the tropical Atlantic. Geophys Res Lett 30(7):1349. https://doi.org/10.1029/2002GL016849

    Article  Google Scholar 

  • Sloyan BM, Rintoul SR (2001) Circulation, renewal, and modification of Antarctic mode and intermediate water. J Phys Oceanogr 31(4):1005–1030

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global Sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. http://topex.ucsd.edu/cgi-bin/get_data.cgi. https://doi.org/10.1126/science.277.5334.1956

    Article  Google Scholar 

  • Speer KG, Zenk W (1993) The flow of Antarctic bottom water into the Brazil Basin. J Phys Oceanogr 23:2667–2682

    Google Scholar 

  • Stephens JC, Marshall DP (2000) Dynamical pathways of Antarctic bottom water in the Atlantic. J Phys Oceanogr 30(3):622–640

    Google Scholar 

  • Stommel H, Arons AB (1960) On the abyssal circulation of the World Ocean. II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res (1953) 6(3):217–233

    Google Scholar 

  • Stramma L (1991) Geostrophic transports of the south equatorial current in the Atlantic. J Mar Res 49:281–294

    Google Scholar 

  • Sverdrup H, Johnson M, Fleming R (1942) The oceans. Their physics, chemistry and general biology. Prentice Hall Inc, New York

    Google Scholar 

  • Tarakanov RY, Makarenko NI, Morozov EG (2013) Antarctic bottom water flow in the western part of the Romanche fracture zone based on the measurements in October of 2011. Oceanology 53(6):655–667. https://doi.org/10.1134/S0001437013050147

    Article  Google Scholar 

  • Tarakanov RY, Morozov EG, van Haren H, Makarenko NI, Demidova TA (2018) Structure of the deep spillway in the western part of the Romanche fracture zone. J Geophys Res Oceans 123:8508–8531. https://doi.org/10.1029/2018JC013961

    Article  Google Scholar 

  • Tucholke BE, Wright WR, Hollister CD (1973) Abyssal circulation over the greater Antilles outer ridge. Deep Sea Res I 20:973–995

    Google Scholar 

  • van Haren H, Gostiaux L, Morozov E, Tarakanov R (2014) Extremely long kelvin–Helmholtz billow trains in the Romanche fracture zone. Geophys Res Lett 41(23):8445–8451. https://doi.org/10.1002/2014GL062421

    Article  Google Scholar 

  • Vanicek M, Siedler G (2002) Zonal fluxes in the deep water layers of the western South Atlantic Ocean. J Phys Oceanogr 32(8):2205–2235

    Google Scholar 

  • Visbeck M (2002) Deep velocity profiling using lowered acoustic doppler current profiler: bottom track and inverse solution. J Atmosph Oceanic Technol 19(5):794–807. https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;27

    Article  Google Scholar 

  • Warren BA, Speer KG (1991) Deep circulation in the eastern South Atlantic Ocean. Deep-Sea Res I 38(Suppl. 1):281–322

    Google Scholar 

  • Weatherly GL, Kelley EA (1982) ‘Too cold’ bottom layers at the base of the Scotian rise. J Mar Res 40(4):985–1012

    Google Scholar 

  • Weatherly GL, Kim YY, Kontar EA (2000) Eulerian measurements of the North Atlantic deep water deep Western boundary current at 18°S. J Phys Oceanogr 30:971–986

    Google Scholar 

  • Whitehead JA, Leetma A, Knox RA (1974) Rotating hydraulics of strait and sill flows. Geophys Fluid Dyn 6(2):101–125. https://doi.org/10.1080/03091927409365790

    Article  Google Scholar 

  • Whitehead JA, Worthington LV (1982) The flux and mixing rates of Antarctic bottom water within the North Atlantic. J Geophys Res Oceans 87(C10):7903–7924. https://doi.org/10.1029/jc087ic10p07903

    Article  Google Scholar 

  • Whitehead JA (1989) Giant ocean cataracts. Sci Am 260:50–57. https://doi.org/10.1038/scientificamerican0289-50

    Article  Google Scholar 

  • Whitehead JA (1998) Topographic control of oceanic flows in deep passages and straits. Rev Geophys 36(3):423–440. https://doi.org/10.1029/98RG01014

    Article  Google Scholar 

  • WOD18 (2018) World Ocean Database 2018. https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html

  • Wright WR (1970) Northward transport of Antarctic bottom water in the Western Atlantic Ocean. Deep-Sea Res I 17:367–371

    Google Scholar 

  • Wunsch C (1984) An eclectic Atlantic Ocean circulation model. Part I: the meridional flux of heat. J Phys Oceanogr 14(11):1712–1733

    Google Scholar 

  • Wüst G (1936) Schichtung und Zirkulation des Atlantischen Ozeans, Das Bodenwasser und die Stratosphäre. In: A. Defant (Ed.), Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs - und Vermessungsschiff „Meteor“ 1925-1927, 6(1), Walter de Gruyter & Co, Berlin, 411 pg

    Google Scholar 

  • Zatsepin AG, Gritsenko VA, Kremenetskii VV, Poyarkov SG, Stroganov OY (2005) Laboratory and numerical study of gravity currents over a sloping bottom. Oceanology 45(1):5–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morozov, E.G., Tarakanov, R.Y., Frey, D.I. (2021). Further Propagation of Antarctic Bottom Water from the Brazil Basin. In: Bottom Gravity Currents and Overflows in Deep Channels of the Atlantic Ocean. Springer, Cham. https://doi.org/10.1007/978-3-030-83074-8_5

Download citation

Publish with us

Policies and ethics