Skip to main content

Concussion Baseline Testing

  • Chapter
  • First Online:
  • 254 Accesses

Abstract

The ability to reliably diagnose concussion remains a challenge for sideline providers caring for wheelchair athletes. Baseline testing represents a potential solution to address this concern based on testing elements already established for similar purposes in able-bodied athletes. The Sport Concussion Assessment Tool Version 5 (SCAT5), Vestibular Ocular Motor Screening (VOMS), Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), and King-Devick are now being utilized in wheelchair athletes, though unique considerations must be taken into account for these athletes due to their underlying medical conditions. In this chapter, we discuss the role of baseline testing in wheelchair athletes, evaluate the existing research on this topic, further elucidate key considerations and components for evaluation of wheelchair athletes, and identify areas primed for future research on this topic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  2. Bryan MA, Rowhani-Rahbar A, Comstock RD, Rivara F. Sports- and recreation-related concussions in US youth. Pediatrics. 2016;138(1).

    Google Scholar 

  3. Harmon KG, Clugston JR, Dec K, Hainline B, Herring S, Kane SF, et al. American medical Society for Sports Medicine position statement on concussion in sport. Br J Sports Med. 2019;53(4):213–25.

    Article  PubMed  Google Scholar 

  4. McCrea M, Kelly JP, Kluge J, Ackley B, Randolph C. Standardized assessment of concussion in football players. Neurology. 1997;48(3):586–8.

    Article  CAS  PubMed  Google Scholar 

  5. McCrory P, Johnston K, Meeuwisse W, Aubry M, Cantu R, Dvorak J, et al. Summary and agreement statement of the 2nd international conference on concussion in sport, Prague 2004. Clin J Sport Med Off J Can Acad Sport Med. 2005;15(2):48–55.

    Article  Google Scholar 

  6. Webborn N, Willick S, Reeser JC. Injuries among disabled athletes during the 2002 winter Paralympic games. Med Sci Sports Exerc. 2006;38(5):811–5.

    Article  PubMed  Google Scholar 

  7. Webborn N, Willick S, Emery CA. The injury experience at the 2010 winter paralympic games. Clin J Sport Med Off J Can Acad Sport Med. 2012;22(1):3–9.

    Article  Google Scholar 

  8. Derman W, Schwellnus MP, Jordaan E, Runciman P, Van de Vliet P, Blauwet C, et al. High incidence of injury at the Sochi 2014 winter Paralympic games: a prospective cohort study of 6564 athlete days. Br J Sports Med. 2016;50(17):1069–74.

    Article  CAS  PubMed  Google Scholar 

  9. Derman W, Runciman P, Jordaan E, Schwellnus M, Blauwet C, Webborn N, et al. High incidence of injuries at the Pyeongchang 2018 Paralympic winter games: a prospective cohort study of 6804 athlete days. Br J Sports Med. 2020;54(1):38–43.

    Article  PubMed  Google Scholar 

  10. Derman W, Schwellnus MP, Jordaan E, Runciman P, Blauwet C, Webborn N, et al. Sport, sex and age increase risk of illness at the Rio 2016 summer Paralympic games: a prospective cohort study of 51 198 athlete days. Br J Sports Med. 2018;52(1):17–23.

    Article  PubMed  Google Scholar 

  11. Kissick J, Webborn N. Concussion in Para sport. Phys Med Rehabil Clin N Am. 2018;29(2):299–311.

    Article  PubMed  Google Scholar 

  12. Wessels KK, Broglio SP, Sosnoff JJ. Concussions in wheelchair basketball. Arch Phys Med Rehabil. 2012;93(2):275–8.

    Article  PubMed  Google Scholar 

  13. Moran R, Broglio S, Francioni K, Sosnoff J. Exploring baseline concussion assessment performance in adapted wheelchair sport athletes. J Athl Train. 2020.

    Google Scholar 

  14. Weiler R, van Mechelen W, Fuller C, Ahmed OH, Verhagen E. Do neurocognitive SCAT3 baseline test scores differ between footballers (soccer) living with and without disability? A cross-sectional study. Clin J Sport Med Off J Can Acad Sport Med. 2018;28(1):43–50.

    Article  Google Scholar 

  15. Zimmer A, Marcinak J, Hibyan S, Webbe F. Normative values of major SCAT2 and SCAT3 components for a college athlete population. Appl Neuropsychol Adult. 2015;22(2):132–40.

    Article  PubMed  Google Scholar 

  16. McCrory P, Meeuwisse W, Dvořák J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–47.

    PubMed  Google Scholar 

  17. Weiler R, Blauwet C, Clarke D, Dalton K, Derman W, Fagher K, et al. Concussion in Para sport: the first position statement of the concussion in Para sport (CIPS) group. Br J Sports Med. 2021.

    Google Scholar 

  18. Mrazik M, Naidu D, Borza C, Kobitowich T, Shergill S. King Devick computerized neurocognitive test scores in professional football players with learning and attentional disabilities. J Neurol Sci. 2019;399:140–3.

    Article  PubMed  Google Scholar 

  19. Chrisman SPD, Harmon KG, Schmidt JD, Kaminski TW, Buckley TA, Kontos AP, et al. Impact of factors that affect Reading skill level on king-Devick baseline performance time. Ann Biomed Eng. 2019;47(10):2122–7.

    Article  CAS  PubMed  Google Scholar 

  20. Cottle JE, Hall EE, Patel K, Barnes KP, Ketcham CJ. Concussion baseline testing: preexisting factors, symptoms, and neurocognitive performance. J Athl Train. 2017;52(2):77–81.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Elbin RJ, Kontos AP, Kegel N, Johnson E, Burkhart S, Schatz P. Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: evidence for separate norms. Arch Clin Neuropsychol. 2013;28(5):476–84.

    Article  CAS  PubMed  Google Scholar 

  22. Resch JE, Brown CN, Schmidt J, Macciocchi SN, Blueitt D, Cullum CM, et al. The sensitivity and specificity of clinical measures of sport concussion: three tests are better than one. BMJ Open Sport Exerc Med. 2016;2(1):e000012.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schatz P, Robertshaw S. Comparing post-concussive neurocognitive test data to normative data presents risks for under-classifying”above average” athletes. Arch Clin Neuropsychol. 2014;29(7):625–32.

    Google Scholar 

  24. McClure DJ, Zuckerman SL, Kutscher SJ, Gregory AJ, Solomon GS. Baseline neurocognitive testing in sports-related concussions: the importance of a prior night's sleep. Am J Sports Med. 2014;42(2):472–8.

    Article  PubMed  Google Scholar 

  25. Sport concussion assessment tool - 5th edition. Br J Sports Med. 2017;51(11):851–8.

    Google Scholar 

  26. Mucha A, Collins MW, Elbin RJ, Furman JM, Troutman-Enseki C, DeWolf RM, et al. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med. 2014;42(10):2479–86.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lovell M. ImPACT: administration and interpretation manual. 2016.

    Google Scholar 

  28. Leong DF, Balcer LJ, Galetta SL, Evans G, Gimre M, Watt D. The king-Devick test for sideline concussion screening in collegiate football. J Optom. 2015;8(2):131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Echemendia RJ, Meeuwisse W, McCrory P, Davis GA, Putukian M, Leddy J, et al. The sport concussion assessment tool 5th edition (SCAT5): background and rationale. Br J Sports Med. 2017;51(11):848–50.

    PubMed  Google Scholar 

  30. Webborn N, Blauwet CA, Derman W, Idrisova G, Lexell J, Stomphorst J, et al. Heads up on concussion in Para sport. Br J Sports Med. 2018;52(18):1157–8.

    Article  PubMed  Google Scholar 

  31. Wessels K. Concussion assessment in wheelchair users: quantifying seated postural control. [Dissertation]. In press 2013.

    Google Scholar 

  32. Snedden TR, Brooks MA, Hetzel S, McGuine T. Normative values of the sport concussion assessment tool 3 (SCAT3) in high school athletes. Clin J Sport Med Off J Can Acad Sport Med. 2017;27(5):462–7.

    Article  Google Scholar 

  33. Chin EY, Nelson LD, Barr WB, McCrory P, McCrea MA. Reliability and validity of the sport concussion assessment Tool-3 (SCAT3) in high school and collegiate athletes. Am J Sports Med. 2016;44(9):2276–85.

    Article  PubMed  Google Scholar 

  34. Hänninen T, Parkkari J, Tuominen M, Öhman J, Howell DR, Iverson GL, et al. Sport concussion assessment tool: interpreting day-of-injury scores in professional ice hockey players. J Sci Med Sport. 2018;21(8):794–9.

    Article  PubMed  Google Scholar 

  35. Echemendia RJ, Thelen J, Meeuwisse W, Hutchison MG, Comper P, Rizos J, et al. Use of the sport concussion assessment tool 5 (SCAT5) in professional hockey, part 1: cross-cultural normative data. Br J Sports Med. 2020.

    Google Scholar 

  36. Fuller GW, Govind O, Tucker R, Raftery M. Sport concussion assessment tool-third edition normative reference values for professional Rugby union players. J Sci Med Sport. 2018;21(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  37. Fuller GW, Raftery M. Sport concussion assessment tool: fifth edition normative reference values for professional Rugby union players. Clin J Sport Med Off J Can Acad Sport Med. 2020;30(5):e150–e3.

    Google Scholar 

  38. Downey RI, Hutchison MG, Comper P. Determining sensitivity and specificity of the sport concussion assessment tool 3 (SCAT3) components in university athletes. Brain Inj. 2018;32(11):1345–52.

    Article  PubMed  Google Scholar 

  39. Moran RN, Covassin T, Elbin R, Gould D, Nogle S. Reliability and normative reference values for the vestibular/ocular motor screening (VOMS) tool in youth athletes. Am J Sports Med. 2018;46:1475–80.

    Article  PubMed  Google Scholar 

  40. Henry LC, Sandel N. Adolescent subtest norms for the ImPACT neurocognitive battery. Appl Neuropsychol Child. 2015;4(4):266–76.

    Article  PubMed  Google Scholar 

  41. Wallace J, Covassin T, Moran R, Deitrick JM. Factors contributing to disparities in baseline neurocognitive performance and concussion symptom scores between black and white collegiate athletes. J Racial Ethn Health Disparities. 2018;5(4):894–900.

    Article  PubMed  Google Scholar 

  42. Reesman J, Pineda J, Carver J, Brice PJ, Zabel TA, Schatz P. Utility of the ImPACT test with deaf adolescents. Clin Neuropsychol. 2016;30(2):318–27.

    Article  PubMed  Google Scholar 

  43. Tsushima WT, Tsushima VG, Murata NM. ImPACT normative data of ethnically diverse adolescent athletes. Clin J Sport Med Off J Can Acad Sport Med. 2020;30(1):52–9.

    Google Scholar 

  44. Walton SR, Broshek DK, Freeman JR, Hertel J, Meyer JP, Erdman NK, et al. Institutionally based ImPACT test® normative values may differ from manufacturer-provided normative values. Arch Clin Neuropsychol. 2020;35(3):275–82.

    Article  PubMed  Google Scholar 

  45. Sandel NK, Worts PR, Burkhart S, Henry L. Comparison of baseline ImPACT performance in amateur motocross riders to football and basketball athletes. Brain Inj. 2018;32(4):493–7.

    Article  PubMed  Google Scholar 

  46. Anderson HD, Biely SA. Baseline king-Devick scores for adults are not generalizable; however, age and education influence scores. Brain Inj. 2017;31(13–14):1813–9.

    Article  PubMed  Google Scholar 

  47. Alsalaheen B, Haines J, Yorke A, Diebold J. King-Devick test reference values and associations with balance measures in high school American football players. Scand J Med Sci Sports. 2016;26(2):235–9.

    Article  CAS  PubMed  Google Scholar 

  48. Rizzo JR, Hudson TE, Dai W, Desai N, Yousefi A, Palsana D, et al. Objectifying eye movements during rapid number naming: methodology for assessment of normative data for the king-Devick test. J Neurol Sci. 2016;362:232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vartiainen MV, Holm A, Peltonen K, Luoto TM, Iverson GL, Hokkanen L. King-Devick test normative reference values for professional male ice hockey players. Scand J Med Sci Sports. 2015;25(3):e327–30.

    Article  CAS  PubMed  Google Scholar 

  50. McIntyre L, Campo M. Descriptive values for dancers on baseline concussion tools. J Athl Train. 2017;52(11):1035–40.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moran RN, Covassin T. King-Devick test normative reference values and internal consistency in youth football and soccer athletes. Scand J Med Sci Sports. 2018;28(12):2686–90.

    Article  PubMed  Google Scholar 

  52. Schmidt JD, Register-Mihalik JK, Mihalik JP, Kerr ZY, Guskiewicz KM. Identifying impairments after concussion: normative data versus individualized baselines. Med Sci Sports Exerc. 2012;44(9):1621–8.

    Article  PubMed  Google Scholar 

  53. Echemendia RJ, Bruce JM, Bailey CM, Sanders JF, Arnett P, Vargas G. The utility of post-concussion neuropsychological data in identifying cognitive change following sports-related MTBI in the absence of baseline data. Clin Neuropsychol. 2012;26(7):1077–91.

    Article  PubMed  Google Scholar 

  54. Buckley TA, Burdette G, Kelly K. Concussion-management practice patterns of National Collegiate Athletic Association Division II and III athletic trainers: how the other half lives. J Athl Train. 2015;50(8):879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moser RS, Schatz P, Lichtenstein JD. The importance of proper administration and interpretation of neuropsychological baseline and postconcussion computerized testing. Appl Neuropsychol Child. 2015;4(1):41–8.

    Article  PubMed  Google Scholar 

  56. Register-Mihalik JK, Kontos DL, Guskiewicz KM, Mihalik JP, Conder R, Shields EW. Age-related differences and reliability on computerized and paper-and-pencil neurocognitive assessment batteries. J Athl Train. 2012;47(3):297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Resch J, Driscoll A, McCaffrey N, Brown C, Ferrara MS, Macciocchi S, et al. ImPact test-retest reliability: reliably unreliable? J Athl Train. 2013;48(4):506–11.

    Article  PubMed  PubMed Central  Google Scholar 

  58. O'Brien AM, Casey JE, Salmon RM. Short-term test-retest reliability of the ImPACT in healthy young athletes. Appl Neuropsychol Child. 2018;7(3):208–16.

    Article  PubMed  Google Scholar 

  59. Bruce J, Echemendia R, Meeuwisse W, Comper P, Sisco A. 1 year test–retest reliability of ImPACT in professional ice hockey players. Clin Neuropsychol. 2014;28(1):14–25.

    Article  PubMed  Google Scholar 

  60. Broglio SP, Ferrara MS, Macciocchi SN, Baumgartner TA, Elliott R. Test-retest reliability of computerized concussion assessment programs. J Athl Train. 2007;42(4):509–14.

    PubMed  PubMed Central  Google Scholar 

  61. Worts PR, Schatz P, Burkhart SO. Test performance and test-retest reliability of the vestibular/ocular motor screening and king-Devick test in adolescent athletes during a competitive sport season. Am J Sports Med. 2018;46(8):2004–10.

    Article  PubMed  Google Scholar 

  62. Oberlander TJ, Olson BL, Weidauer L. Test-retest reliability of the king-Devick test in an adolescent population. J Athl Train. 2017;52(5):439–45.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Breedlove KM, Ortega JD, Kaminski TW, Harmon KG, Schmidt JD, Kontos AP, et al. King-Devick test reliability in National Collegiate Athletic Association Athletes: a National Collegiate Athletic Association-Department of defense concussion assessment, research and education report. J Athl Train. 2019;54(12):1241–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eddy R, Goetschius J, Hertel J, Resch J. Test-retest reliability and the effects of exercise on the king-Devick test. Clin J Sport Med Off J Can Acad Sport Med. 2020;30(3):239–44.

    Google Scholar 

  65. Richard J, Lin YS, Wernet L, Kasitinon D, Royston A, Bristow K, et al. Is the king-Devick test a reliable tool in wheelchair athletes? A preliminary prospective study in wheelchair basketball. Clin J Sport Med Off J Can Acad Sport Med. 2020.

    Google Scholar 

  66. Harper MW, Lee J, Sherman KA, Uihlein MJ, Lee KKK. Wheelchair Athlete Concussion Baseline Data: A Pilot Retrospective Analysis. American journal of physical medicine & rehabilitation. 2021;100(9):895–9.

    Google Scholar 

  67. West LR, Griffin S, Weiler R, Ahmed OH. Management of concussion in disability sport: a different ball game? Br J Sports Med. 2017;51(14):1050–1.

    Article  PubMed  Google Scholar 

  68. Castellanos J, Phoo CP, Eckner JT, Franco L, Broglio SP, McCrea M, et al. Predicting risk of sport-related concussion in collegiate athletes and military cadets: a machine learning approach using baseline data from the CARE consortium study. Sports Med. 2021;51(3):567–79.

    Article  PubMed  Google Scholar 

  69. Blauwet CA, Yang HY, Cruz SA, Collins JE, Smith KC, Losina E, et al. Functional and environmental factors are associated with sustained participation in adaptive sports. PM R. 2017;9(7):668–75.

    Article  PubMed  Google Scholar 

  70. Lape EC, Katz JN, Losina E, Kerman HM, Gedman MA, Blauwet CA. Participant-reported benefits of involvement in an adaptive sports program: a qualitative study. PM R. 2018;10(5):507–15.

    Article  PubMed  Google Scholar 

  71. Haarbauer-Krupa J, Arbogast KB, Metzger KB, Greenspan AI, Kessler R, Curry AE, et al. Variations in mechanisms of injury for children with concussion. J Pediatr. 2018;197:241–8.e1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Senk .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Data 2.1

(PDF 6779 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senk, A.M., Benert, J.M., Schwanz, K.L., Webborn, N. (2021). Concussion Baseline Testing. In: Lee, K., Harper, M.W., Uihlein, M.J., McCrea, M. (eds) Concussion Management for Wheelchair Athletes . Springer, Cham. https://doi.org/10.1007/978-3-030-83004-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83004-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83003-8

  • Online ISBN: 978-3-030-83004-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics