Skip to main content

On the Development of Icephobic Surfaces: Bridging Experiments and Simulations

  • Chapter

Abstract

Ice formation on surfaces is a common phenomenon occurring in the presence of water at temperatures below the freezing point, and can negatively impact many aspects of our lives. Atmospheric icing, which forms due to the natural presence of water as small liquid drops or vapor in the air, can cause damage to ground transportation, airplanes, power lines, and communication systems (e.g., telephone and cable television line operations) and other man-made structures and devices.

Keywords

  • Anti-icing
  • Deicing
  • Icephobic
  • Surfaces
  • Molecular dynamics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Poots G, Gent RW, Dart NP, Cansdale JT. Aircraft icing. Philos Trans R Soc London Ser A Math Phys Eng Sci 2000;358:2873–911. https://doi.org/10.1098/rsta.2000.0689.

    CrossRef  MATH  Google Scholar 

  2. Appiah-Kubi P, Martos B, Atuahene I, William S. U.S. Inflight Icing Accidents and Incidents, 2006 to 2010. 2013.

    Google Scholar 

  3. Farzaneh Masoud. Overview of Impact & Mitigation of Icing on Power Network Equipment Masoud. Https://WwwInmrCom 2019.

    Google Scholar 

  4. Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 2009;13:428–38. https://doi.org/10.1016/j.rser.2007.11.009.

  5. Farzaneh M, Gauthier H, Castellana G, Englebrecht C, Elìasson ÁJ, Fikke S, et al. Coatings for Protecting Overhead Power in Winter Conditions Network Equipment. 2015.

    Google Scholar 

  6. Jones K, Mulherin N. An evaluation of the severity of the January 1998 ice storm in northern New England. Rep FEMA Reg 1 1998:33.

    Google Scholar 

  7. Henson W, Stewart R, Kochtubajda B. On the precipitation and related features of the 1998 Ice Storm in the Montréal area. Atmos Res 2007;83:36–54. https://doi.org/10.1016/j.atmosres.2006.03.006.

    CrossRef  Google Scholar 

  8. Gyakum JR, Roebber PJ. The 1998 ice storm-analysis of a planetary-scale event. Mon Weather Rev 2001;129:2983–97. https://doi.org/10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2.

    CrossRef  Google Scholar 

  9. Elíasson ÁJ. Wet-snow accumulation A study of two severe events in complex terrain in Iceland 2012.

    Google Scholar 

  10. André Leblond, Fikke SM, Wareing B, Chereshnyuk S, Elíasson ÁJ, Farzaneh M, et al. Guidelines for meteorological icing models, statistical methods and topographical effects. vol. 225. 2006.

    Google Scholar 

  11. Fikke S, Persson P-E, Wareing B, Chum J, Makkonen L, Ronsten G, et al. COST 727: Atmospheric Icing on Structures Measurements and data collection on icing: State of the Art. Meteo Schweiz 2007:115.

    Google Scholar 

  12. Huang X, Tepylo N, Pommier-Budinger V, Budinger M, Bonaccurso E, Villedieu P, et al. Ice-phobic surfaces that are wet. Appl Surf Sci 2011;6:5166–72. https://doi.org/10.1016/j.cis.2019.04.005.

    CrossRef  Google Scholar 

  13. Farzaneh M, Jakl F, Arabani MP, Elìasson AJ, Fikke SM, Gallego A, et al. Systems for prediction and monitoring of ice shedding, anti-icing and de-icing for power line conductors and ground wires. vol. 10. 2011. https://doi.org/10.1016/S1474-4422(11)70033-3.

  14. Schutzius TM, Jung S, Maitra T, Eberle P, Antonini C, Stamatopoulos C, et al. Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity. Langmuir 2015;31:4807–21. https://doi.org/10.1021/la502586a.

    CrossRef  Google Scholar 

  15. Amirfazli A, Antonini C. Fundamentals of Anti-Icing Surfaces. Non-wettable Surfaces Theory, Prep. Appl., Royal Society of Chemistry; 2016, p. 319–46. https://doi.org/10.1039/9781782623953-00319.

  16. Stone H a. Ice-phobic surfaces that are wet. ACS Nano 2012;6:6536–40. https://doi.org/10.1021/nn303372q.

  17. Irajizad P, Nazifi S, Ghasemi H. Icephobic surfaces: Definition and figures of merit. Adv Colloid Interface Sci 2019. https://doi.org/10.1016/j.cis.2019.04.005.

    CrossRef  Google Scholar 

  18. Huang X, Tepylo N, Pommier-Budinger V, Budinger M, Bonaccurso E, Villedieu P, et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Prog Aerosp Sci 2019. https://doi.org/10.1016/j.paerosci.2019.01.002.

    CrossRef  Google Scholar 

  19. Shen Y, Wu X, Tao J, Zhu C, Lai Y, Chen Z. Icephobic materials: Fundamentals, performance evaluation, and applications. Prog Mater Sci 2019;103:509–57. https://doi.org/10.1016/j.pmatsci.2019.03.004.

    CrossRef  Google Scholar 

  20. Volmer M, Weber Α. Keimbildung in übersättigten Gebilden. Zeitschrift Für Phys Chemie 2017;119U:277–301. https://doi.org/10.1515/zpch-1926-11927.

    CrossRef  Google Scholar 

  21. Becker R, Döring W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann Phys 1935;416:719–52. https://doi.org/10.1002/andp.19354160806.

    CrossRef  MATH  Google Scholar 

  22. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys 1949;17:71–3. https://doi.org/10.1063/1.1747055.

    CrossRef  Google Scholar 

  23. Bai XM, Li M. Test of classical nucleation theory via molecular-dynamics simulation. J Chem Phys 2005;122:1–4. https://doi.org/10.1063/1.1931661.

    CrossRef  Google Scholar 

  24. Lamb D, Verlinde J. Physics and Chemistry of Clouds. Cambridge: Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511976377.

  25. Ickes L, Welti A, Hoose C, Lohmanna U. Classical Nucleation Theory of homogeneous freezing of water: Thermodynamic and kinetic parameters. Phys Chem Chem Phys 2015;17:5514–37. https://doi.org/10.1039/c4cp04184d.

    CrossRef  Google Scholar 

  26. Sojoudi H, McKinley GH, Gleason KK. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Mater Horizons 2015;2:91–9. https://doi.org/10.1039/c4mh00162a.

    CrossRef  Google Scholar 

  27. Guerin F, Laforte C, Farinas M-I, Perron J. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg Sci Technol 2016;121:93–9. https://doi.org/10.1016/j.coldregions.2015.10.011.

  28. Rønneberg S, He J, Zhang Z. The need for standards in low ice adhesion surface research: a critical review. J Adhes Sci Technol 2020;34:319–47. https://doi.org/10.1080/01694243.2019.1679523.

    CrossRef  Google Scholar 

  29. Jamil MI, Zhan X, Chen F, Cheng D, Zhang Q. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Appl Mater Interfaces 2019;11:31532–42. https://doi.org/10.1021/acsami.9b09819.

    CrossRef  Google Scholar 

  30. Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, et al. Tuning Ice Nucleation with Supercharged Polypeptides. Adv Mater 2016;28:5008–12. https://doi.org/10.1002/adma.201600496.

  31. Moriya T, Manabe K, Tenjimbayashi M, Suwabe K, Tsuchiya H, Matsubayashi T, et al. A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier. RSC Adv 2016;6:92197–205. https://doi.org/10.1039/C6RA18483A.

    CrossRef  Google Scholar 

  32. Bai G, Gao D, Liu Z, Zhou X, Wang J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019;576:437–41. https://doi.org/10.1038/s41586-019-1827-6.

    CrossRef  Google Scholar 

  33. Liu M, Hou Y, Li J, Tie L, Guo Z. Transparent slippery liquid-infused nanoparticulate coatings. Chem Eng J 2018;337:462–70. https://doi.org/10.1016/j.cej.2017.12.118.

  34. Zheng L, Li Z, Bourdo S, Khedir RK, Asar MP, Ryerson CC, et al. Exceptional Superhydrophobicity and Low Velocity Impact Icephobicity of Acetone-Functionalized Carbon Nanotube Films. Langmuir 2011;27:9936.

    CrossRef  Google Scholar 

  35. Eberle P, Tiwari MK, Maitra T, Poulikakos D. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 2014;6:4874–81. https://doi.org/10.1039/c3nr06644d.

    CrossRef  Google Scholar 

  36. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 2011;67:58–67. https://doi.org/10.1016/j.coldregions.2011.02.006.

    CrossRef  Google Scholar 

  37. Jung S, Dorrestijn M, Raps D, Das A, Megaridis CM, Poulikakos D. Are Superhydrophobic Surfaces Best for Icephobicity? Langmuir 2011;27:3059. https://doi.org/10.1021/la104762g.

  38. Brassard JD, Laforte C, Guerin F, Blackburn C. Icephobicity: Definition and measurement regarding atmospheric icing. Adv Polym Sci 2019;284:123–43. https://doi.org/10.1007/12_2017_36.

    CrossRef  Google Scholar 

  39. Hejazi V, Sobolev K, Nosonovsky M. From superhydrophobicity to icephobicity: forces and interaction analysis. Sci Rep 2013;3:2194. https://doi.org/10.1038/srep02194.

    CrossRef  Google Scholar 

  40. Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteja A. Designing durable icephobic surfaces. Sci Adv 2016;2:e1501496. https://doi.org/10.1126/sciadv.1501496

  41. Wang Y, Liu J, Li M, Wang Q, Chen Q. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments. Appl Surf Sci 2016;385:472–80. https://doi.org/10.1016/j.apsusc.2016.05.117.

    CrossRef  Google Scholar 

  42. Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg Sci Technol 2011;65:88–96. https://doi.org/10.1016/j.coldregions.2010.01.005.

    CrossRef  Google Scholar 

  43. Sojoudi H, Wang M, Boscher ND, McKinley GH, Gleason KK. Durable and scalable icephobic surfaces: Similarities and distinctions from superhydrophobic surfaces. Soft Matter 2016;12:1938–63. https://doi.org/10.1039/c5sm02295a.

    CrossRef  Google Scholar 

  44. Ryzhkin IA, Petrenko VF. Physical Mechanisms Responsible for Ice Adhesion. J Phys Chem B 1997;101:6267–70. https://doi.org/10.1021/jp9632145.

    CrossRef  Google Scholar 

  45. Wilen LA, Wettlaufer JS, Elbaum M, Schick M. Dispersion-force effects in interfacial premelting of ice. Phys Rev B 1995;52:12426–33. https://doi.org/10.1103/PhysRevB.52.12426.

    CrossRef  Google Scholar 

  46. Menini R, Farzaneh M. Advanced icephobic coatings. J Adhes Sci Technol 2011;25:971–92. https://doi.org/10.1163/016942410X533372.

    CrossRef  Google Scholar 

  47. Somlo B, Gupta V. A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech Mater 2001;33:471–80. https://doi.org/10.1016/S0167-6636(01)00068-0.

    CrossRef  Google Scholar 

  48. Yang S, Xia Q, Zhu L, Xue J, Wang Q, Chen QM. Research on the icephobic properties of fluoropolymer-based materials. Appl Surf Sci 2011;257:4956–62. https://doi.org/10.1016/j.apsusc.2011.01.003.

    CrossRef  Google Scholar 

  49. Ghalmi Z, Farzaneh M. Experimental investigation to evaluate the effect of PTFE nanostructured roughness on ice adhesion strength. Cold Reg Sci Technol 2015;115:42–7. https://doi.org/10.1016/j.coldregions.2015.03.009.

    CrossRef  Google Scholar 

  50. Peng C, Xing S, Yuan Z, Xiao J, Wang C, Zeng J. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl Surf Sci 2012;259:764–8. https://doi.org/10.1016/j.apsusc.2012.07.118.

    CrossRef  Google Scholar 

  51. Yamaguchi H, Kikuchi M, Kobayashi M, Ogawa H, Masunaga H, Sakata O, et al. Influence of molecular weight dispersity of poly{2-(perfluorooctyl)ethyl acrylate} brushes on their molecular aggregation states and wetting behavior. Macromolecules 2012;45:1509–16. https://doi.org/10.1021/ma202300r.

    CrossRef  Google Scholar 

  52. Yagüe JL, Gleason KK. Enhanced cross-linked density by annealing on fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction. Macromolecules 2013;46:6548–54. https://doi.org/10.1021/ma4010633.

    CrossRef  Google Scholar 

  53. Valentini L, Bittolo Bon S, Hernández M, Lopez-Manchado MA, Pugno NM. Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Compos Sci Technol 2018;166:109–14. https://doi.org/10.1016/j.compscitech.2018.01.050.

    CrossRef  Google Scholar 

  54. He Z, Zhuo Y, He J, Zhang Z. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter 2018;14:4846–51. https://doi.org/10.1039/c8sm00820e.

    CrossRef  Google Scholar 

  55. Yu D, Zhao Y, Li H, Qi H, Li B, Yuan X. Preparation and evaluation of hydrophobic surfaces of polyacrylate- polydimethylsiloxane copolymers for anti-icing. Prog Org Coatings 2013;76:1435–44. https://doi.org/10.1016/j.porgcoat.2013.05.036.

    CrossRef  Google Scholar 

  56. Irajizad P, Al-Bayati A, Eslami B, Shafquat T, Nazari M, Jafari P, et al. Stress-localized durable icephobic surfaces. Mater Horizons 2019;6:758–66. https://doi.org/10.1039/c8mh01291a.

    CrossRef  Google Scholar 

  57. Valentini L, Bittolo Bon S, Pugno NM, Hernandez Santana M, Lopez-Manchado MA, Giorgi G. Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Compos Part B Eng 2019;166:352–60. https://doi.org/10.1016/j.compositesb.2018.11.095.

    CrossRef  Google Scholar 

  58. Zhuo Y, Xiao S, Amirfazli A, He J, Zhang Z. Polysiloxane as icephobic materials – The past, present and the future. Chem Eng J 2021;405:127088. https://doi.org/10.1016/j.cej.2020.127088.

    CrossRef  Google Scholar 

  59. Lee JB, Dos Santos S, Antonini C. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen. Langmuir 2016;32:8245–54. https://doi.org/10.1021/acs.langmuir.6b01796.

    CrossRef  Google Scholar 

  60. Chaudhury MK, Kim KH. Shear-induced adhesive failure of a rigid slab in contact with a thin confined film. Eur Phys J E 2007;23:175–83. https://doi.org/10.1140/epje/i2007-10171-x.

    CrossRef  Google Scholar 

  61. Wang C, Fuller T, Zhang W, Wynne KJ. Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184. Langmuir 2014;30:12819–26. https://doi.org/10.1021/la5030444.

    CrossRef  Google Scholar 

  62. Liu Y, Ma L, Wang W, Kota AK, Hu H. An experimental study on soft PDMS materials for aircraft icing mitigation. Appl Surf Sci 2018;447:599–609. https://doi.org/10.1016/j.apsusc.2018.04.032.

    CrossRef  Google Scholar 

  63. Lv J, Yao X, Zheng Y, Wang J, Jiang L. Antiadhesion Organogel Materials: From Liquid to Solid. Adv Mater 2017;29:1–8. https://doi.org/10.1002/adma.201703032.

    CrossRef  Google Scholar 

  64. He Z, Xiao S, Gao H, He J, Zhang Z. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter 2017;13:6562–8. https://doi.org/10.1039/c7sm01511a.

    CrossRef  Google Scholar 

  65. Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteja A. Designing durable icephobic surfaces. Sci Adv 2016;2. https://doi.org/10.1126/sciadv.1501496.

  66. Wang Y, Yao X, Chen J, He Z, Liu J, Li Q, et al. Organogel as durable anti-icing coatings. Sci China Mater 2015;58:559–65. https://doi.org/10.1007/s40843-015-0069-7.

    CrossRef  Google Scholar 

  67. Wang Y, Yao X, Wu S, Li Q, Lv J, Wang J, et al. Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Adv Mater 2017;29:1–7. https://doi.org/10.1002/adma.201700865.

    CrossRef  Google Scholar 

  68. Rioboo R, Marengo M, Dall’Olio S, Voue M, De Coninck J. An innovative method to control the incipient flow boiling through grafted surfaces with chemical patterns. Langmuir 2009;25:6005–9. https://doi.org/10.1021/la900463b.

  69. Boreyko JB, Hansen RR, Murphy KR, Nath S, Retterer ST, Collier CP. Controlling condensation and frost growth with chemical micropatterns. Sci Rep 2016;6:1–15. https://doi.org/10.1038/srep19131.

    CrossRef  Google Scholar 

  70. Nath S, Ahmadi SF, Boreyko JB. A Review of Condensation Frosting. Nanoscale Microscale Thermophys Eng 2017;21:81–101. https://doi.org/10.1080/15567265.2016.1256007.

    CrossRef  Google Scholar 

  71. Mangini D, Antonini C, Marengo M, Amirfazli A. Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Reg Sci Technol 2015;109:53–60. https://doi.org/10.1016/j.coldregions.2014.09.012.

    CrossRef  Google Scholar 

  72. Bar Dolev M, Braslavsky I, Davies PL. Ice-Binding Proteins and Their Function. Annu Rev Biochem 2016;85:515–42. https://doi.org/10.1146/annurev-biochem-060815-014546.

    CrossRef  Google Scholar 

  73. Davies PL. Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 2014;39:548–55. https://doi.org/10.1016/j.tibs.2014.09.005.

    CrossRef  Google Scholar 

  74. Raymond JA, Devries AL. Adsorption inhibition as a mechanism of freezing resistance in polar fishes 1977;74:2589–93.

    Google Scholar 

  75. Gwak Y, Park J-I, Kim M, Kim HS, Kwon MJ, Oh SJ, et al. Creating Anti-icing Surfaces via the Direct Immobilization of Antifreeze Proteins on Aluminum. Sci Rep 2015;5:12019. https://doi.org/10.1038/srep12019.

    CrossRef  Google Scholar 

  76. Kasahara K, Waku T, Wilson PW, Tonooka T, Hagiwara Y. The inhibition of icing and frosting on glass surfaces by the coating of polyethylene glycol and polypeptide mimicking antifreeze protein. Biomolecules 2020;10:1–13. https://doi.org/10.3390/biom10020259.

    CrossRef  Google Scholar 

  77. Vance TDR, Bayer-Giraldi M, Davies PL, Mangiagalli M. Ice-binding proteins and the ‘domain of unknown function’ 3494 family. FEBS J 2019;286:855–73. https://doi.org/10.1111/febs.14764.

    CrossRef  Google Scholar 

  78. Duman JG. Animal ice-binding (antifreeze) proteins and glycolipids: An overview with emphasis on physiological function. J Exp Biol 2015;218:1846–55. https://doi.org/10.1242/jeb.116905.

    CrossRef  Google Scholar 

  79. Gibson MI. Slowing the growth of ice with synthetic macromolecules: Beyond antifreeze(glyco) proteins. Polym Chem 2010;1:1141–52. https://doi.org/10.1039/c0py00089b.

    CrossRef  Google Scholar 

  80. Kaleda A, Haleva L, Sarusi G, Pinsky T, Mangiagalli M, Bar Dolev M, et al. Saturn-Shaped Ice Burst Pattern and Fast Basal Binding of an Ice-Binding Protein from an Antarctic Bacterial Consortium. Langmuir 2019;35:7337–46. https://doi.org/10.1021/acs.langmuir.8b01914.

    CrossRef  Google Scholar 

  81. Drori R, Davies PL, Braslavsky I. When are antifreeze proteins in solution essential for ice growth inhibition? Langmuir 2015;31:5805–11. https://doi.org/10.1021/acs.langmuir.5b00345.

    CrossRef  Google Scholar 

  82. Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, et al. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. FEBS J 2017;284:163–77. https://doi.org/10.1111/febs.13965.

    CrossRef  Google Scholar 

  83. Mangiagalli M, Sarusi G, Kaleda A, Bar Dolev M, Nardone V, Vena VF, et al. Structure of a bacterial ice binding protein with two faces of interaction with ice. FEBS J 2018;285:1653–66. https://doi.org/10.1111/febs.14434.

    CrossRef  Google Scholar 

  84. Mangiagalli M, Brocca S, Orlando M, Lotti M. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. N Biotechnol 2020;55:5–11. https://doi.org/10.1016/j.nbt.2019.09.003.

  85. Xu Q, Wilen LA, Jensen KE, Style RW, Dufresne ER. Viscoelastic and poroelastic relaxations of soft solid surfaces. ArXiv 2020;125:238002. https://doi.org/10.1103/physrevlett.125.238002.

    CrossRef  Google Scholar 

  86. Glover JD, McLaughlin CE, McFarland MK, Pham JT. Extracting uncrosslinked material from low modulus sylgard 184 and the effect on mechanical properties. J Polym Sci 2020;58:343–51. https://doi.org/10.1002/pol.20190032.

    CrossRef  Google Scholar 

  87. Peng J, Liu B, Gao SH, Zhu KY, Zhao YH, Li XH, et al. Enhanced anti-icing properties of branched PDMS coatings with self-regulated surface patterns. Sci China Technol Sci 2020;63:960–70. https://doi.org/10.1007/s11431-019-1482-x.

    CrossRef  Google Scholar 

  88. Guo H, Liu M, Xie C, Zhu Y, Sui X, Wen C, et al. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials. Chem Eng J 2020;402:126161. https://doi.org/10.1016/j.cej.2020.126161.

    CrossRef  Google Scholar 

  89. Li C, Li X, Tao C, Ren L, Zhao Y, Bai S, et al. Amphiphilic Antifogging/Anti-Icing Coatings Containing POSS-PDMAEMA-b-PSBMA. ACS Appl Mater Interfaces 2017;9:22959–69. https://doi.org/10.1021/acsami.7b05286.

    CrossRef  Google Scholar 

  90. Rahimi AR, Murphy M, Upadhyay V, Faiyaz K, Battocchi D, Webster DC. Amphiphilically modified self-stratified siloxane-glycidyl carbamate coatings for anti-icing applications. J Coatings Technol Res 2020. https://doi.org/10.1007/s11998-020-00402-8.

    CrossRef  Google Scholar 

  91. Ozbay S, Yuceel C, Erbil HY. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid. ACS Appl Mater Interfaces 2015;7:22067–77. https://doi.org/10.1021/acsami.5b07265.

    CrossRef  Google Scholar 

  92. Subramanyam SB, Rykaczewski K, Varanasi KK. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 2013;29:13414–8. https://doi.org/10.1021/la402456c.

    CrossRef  Google Scholar 

  93. Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK. Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 2013;29:5230–8. https://doi.org/10.1021/la400801s.

    CrossRef  Google Scholar 

  94. Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012;6:6569–77. https://doi.org/10.1021/nn302310q.

    CrossRef  Google Scholar 

  95. Parker AR, Lawrence CR. Water capture by a desert beetle. Nature 2001;414:33–4.

    CrossRef  Google Scholar 

  96. Gao L, McCarthy TJ. Wetting 101°. Langmuir 2009;25:14105–15. https://doi.org/10.1021/la902206c.

    CrossRef  Google Scholar 

  97. Furmidge CGL. Studies at Phase Interfaces I. The Sliding of Liquiid Drops on Solid Surfaces and a Theory for Spray Retention. J Colloid Sci 1962;17:309--324. https://doi.org/10.1016/j.ultrasmedbio.2012.04.007.

  98. Dotan A, Dodiuk H, Laforte C, Kenig S. The relationship between water wetting and ice adhesion. J Adhes Sci Technol 2009;23:1907–15. https://doi.org/10.1163/016942409X12510925843078.

    CrossRef  Google Scholar 

  99. Kulinich SA, Farzaneh M. Ice adhesion on super-hydrophobic surfaces. Appl Surf Sci 2009;255:8153–7. https://doi.org/10.1016/j.apsusc.2009.05.033.

    CrossRef  Google Scholar 

  100. Meuler AJ, Smith JD, Varanasi KK, Mabry JM, McKinley GH, Cohen RE. Relationships between Water Wettability and Ice Adhesion. ACS Appl Mater Interfaces 2010;11:3100. https://doi.org/10.1021/am1006035.

  101. Nosonovsky M, Hejazi V. Why Superhydrophobic Surfaces Are Not Always Icephobic. ACS Nano 2012;6:8488–91. https://doi.org/10.1021/nn302138r.

    CrossRef  Google Scholar 

  102. Maitra T, Jung S, Giger ME, Kandrical V, Ruesch T, Poulikakos D. Superhydrophobicity vs. Ice Adhesion: The Quandary of Robust Icephobic Surface Design. Adv Mater Interfaces 2015;2. https://doi.org/10.1002/admi.201500330.

  103. Ling EJY, Uong V, Renault-Crispo JS, Kietzig AM, Servio P. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects. ACS Appl Mater Interfaces 2016;8:8789–800. https://doi.org/10.1021/acsami.6b00187.

    CrossRef  Google Scholar 

  104. Dhiman R, Chandra S. Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. Int J Heat Mass Transf 2005;48:5625–38. https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.044.

    CrossRef  Google Scholar 

  105. Schiaffino S, Sonin AA. Molten droplet deposition and solidification at low Weber numbers 1997;9. https://doi.org/10.1063/1.869434.

  106. Maitra T, Antonini C, Tiwari MK, Mularczyk A, Imeri Z, Schoch P, et al. Supercooled water drops impacting superhydrophobic textures. Langmuir 2014;30:10855–61. https://doi.org/10.1021/la502675a.

    CrossRef  Google Scholar 

  107. Li H, Roisman I V., Tropea C. Influence of solidification on the impact of supercooled water drops onto cold surfaces. Exp Fluids 2015;56:133. https://doi.org/10.1007/s00348-015-1999-2.

    CrossRef  Google Scholar 

  108. Wright WB, Struk P, Bartkus T, Addy G. Recent Advances in the LEWICE Icing Model. SAE Tech Pap 2015;2015-June. https://doi.org/10.4271/2015-01-2094.

  109. Bourgault Y, Boutanios Z, Habashi WG. Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: Model, algorithm, and validation. J Aircr 2000;37:95–103. https://doi.org/10.2514/2.2566.

    CrossRef  Google Scholar 

  110. Son C, Kim T. Development of an icing simulation code for rotating wind turbines. J Wind Eng Ind Aerodyn 2020;203:104239. https://doi.org/10.1016/j.jweia.2020.104239.

    CrossRef  Google Scholar 

  111. Makkonen L, Laakso T, Marjaniemi M, Finstad KJ. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind Eng 2002;25:3–21. https://doi.org/10.1260/0309524011495791.

    CrossRef  Google Scholar 

  112. Zhao Y, Guo Q, Lin T, Cheng P. A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls. Int J Heat Mass Transf 2020;159. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120074.

  113. Xue Y, Liu R, Li Z, Han D. A review for numerical simulation methods of ship–ice interaction. Ocean Eng 2020;215:107853. https://doi.org/10.1016/j.oceaneng.2020.107853.

    CrossRef  Google Scholar 

  114. Lupi L, Molinero V. Does hydrophilicity of carbon particles improve their ice nucleation ability? J Phys Chem A 2014;118:7330–7. https://doi.org/10.1021/jp4118375.

    CrossRef  Google Scholar 

  115. Cox SJ, Kathmann SM, Slater B, Michaelides A. Molecular simulations of heterogeneous ice nucleation . II . Peeling back the layers. J Chem Phys 2015;142. https://doi.org/10.1063/1.4919715.

  116. Cox SJ, Kathmann SM, Purton JA, Gillan MJ, Michaelides A. Non-hexagonal ice at hexagonal surfaces: The role of lattice mismatch. Phys Chem Chem Phys 2012;14:7944–9. https://doi.org/10.1039/c2cp23438f.

    CrossRef  Google Scholar 

  117. Glatz B, Sarupria S. The surface charge distribution affects the ice nucleating efficiency of silver iodide. J Chem Phys 2016;145. https://doi.org/10.1063/1.4966018.

  118. Pruppacher HR, James D Klett. Microphysics of Clouds and Precipitation. 1978. https://doi.org/10.1007/978-94-009-9905-3.

  119. Pedevilla P, Cox SJ, Slater B, Michaelides A. Can Ice-Like Structures Form on Non-Ice-Like Substrates? The Example of the K-feldspar Microcline. J Phys Chem C 2016;120:6704–13. https://doi.org/10.1021/acs.jpcc.6b01155.

    CrossRef  Google Scholar 

  120. Bi Y, Cabriolu R, Li T. Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity. J Phys Chem C 2016;120:1507–14. https://doi.org/10.1021/acs.jpcc.5b09740.

    CrossRef  Google Scholar 

  121. Glatz B, Sarupria S. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations. Langmuir 2018;34:1190–8. https://doi.org/10.1021/acs.langmuir.7b02859.

    CrossRef  Google Scholar 

  122. Fitzner M, Sosso GC, Cox SJ, Michaelides A. The Many Faces of Heterogeneous Ice Nucleation: Interplay between Surface Morphology and Hydrophobicity. J Am Chem Soc 2015;137:13658–69. https://doi.org/10.1021/jacs.5b08748.

    CrossRef  Google Scholar 

  123. Lupi L, Hudait A, Molinero V. Heterogeneous nucleation of ice on carbon surfaces. J Am Chem Soc 2014;136:3156–64. https://doi.org/10.1021/ja411507a.

    CrossRef  Google Scholar 

  124. Li K, Xu S, Chen J, Zhang Q, Zhang Y, Cui D, et al. Viscosity of interfacial water regulates ice nucleation. Appl Phys Lett 2014;104. https://doi.org/10.1063/1.4868255.

  125. Goertz MP, Houston JE, Zhu X-Y. Hydrophilicity and the viscosity of interfacial water. Langmuir 2007;23:5491–7. https://doi.org/10.1021/la062299q.

    CrossRef  Google Scholar 

  126. Cox SJ, Kathmann SM, Slater B, Michaelides A. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J Chem Phys 2015;142. https://doi.org/10.1063/1.4919714.

  127. Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, et al. Water at Interfaces. Chem Rev 2016;116:7698–726. https://doi.org/10.1021/acs.chemrev.6b00045.

    CrossRef  Google Scholar 

  128. Chattopadhyay S, Uysal A, Stripe B, Ha YG, Marks TJ, Karapetrova EA, et al. How water meets a very hydrophobic surface. Phys Rev Lett 2010;105:1–4. https://doi.org/10.1103/PhysRevLett.105.037803.

    CrossRef  Google Scholar 

  129. Chen D, Gelenter MD, Hong M, Cohen RE, McKinley GH. Icephobic surfaces induced by interfacial nonfrozen water. ACS Appl Mater Interfaces 2017;9:4202–14. https://doi.org/10.1021/acsami.6b13773.

    CrossRef  Google Scholar 

  130. Limmer DT, Chandler D. Premelting, fluctuations, and coarse-graining of water-ice interfaces. J Chem Phys 2014;141. https://doi.org/10.1063/1.4895399.

  131. Kling T, Kling F, Donadio D. Structure and Dynamics of the Quasi-Liquid Layer at the Surface of Ice from Molecular Simulations. J Phys Chem C 2018;122:24780–7. https://doi.org/10.1021/acs.jpcc.8b07724.

    CrossRef  Google Scholar 

  132. Xiao S, He J, Zhang Z. Nanoscale deicing by molecular dynamics simulation. Nanoscale 2016;8:14625–32. https://doi.org/10.1039/c6nr02398c.

    CrossRef  Google Scholar 

  133. Metya AK, Singh JK. Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. Mol Simul 2019;45:394–402. https://doi.org/10.1080/08927022.2018.1513649.

    CrossRef  Google Scholar 

  134. Bao L, Huang Z, Priezjev N V., Chen S, Luo K, Hu H. A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: A molecular dynamics simulation study. Appl Surf Sci 2018;437:202–8. https://doi.org/10.1016/j.apsusc.2017.12.096.

    CrossRef  Google Scholar 

  135. Rønneberg S, Xiao S, He J, Zhang Z. Nanoscale correlations of ice adhesion strength and water contact angle. Coatings 2020;10:1–17. https://doi.org/10.3390/coatings10040379.

    CrossRef  Google Scholar 

  136. Xiao S, Skallerud BH, Wang F, Zhang Z, He J. Enabling sequential rupture for lowering atomistic ice adhesion. Nanoscale 2019;11:16262–9. https://doi.org/10.1039/c9nr00104b.

    CrossRef  Google Scholar 

  137. Ringdahl S, Xiao S, He J, Zhang Z. Machine Learning Based Prediction of Nanoscale Ice Adhesion on Rough Surfaces. Coatings 2020;11:33. https://doi.org/10.3390/coatings11010033.

    CrossRef  Google Scholar 

  138. Antonini C, Lee JBB, Maitra T, Irvine S, Derome D, Tiwari MKMKMKMK, et al. Unraveling wetting transition through surface textures with X-rays: Liquid meniscus penetration phenomena. Sci Rep 2014;4:4055. https://doi.org/10.1038/srep04055.

  139. Enright R, Miljkovic N, Al-Obeidi A, Thompson C V, Wang EN. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 2012;28:14424–32. https://doi.org/10.1021/la302599n.

    CrossRef  Google Scholar 

  140. El-Zoka AA, Kim SH, Deville S, Newman RC, Stephenson LT, Gault B. Enabling near-atomic–scale analysis of frozen water. Sci Adv 2020;6:1–12. https://doi.org/10.1126/sciadv.abd6324.

    CrossRef  Google Scholar 

  141. Caddeo C, Melis C, Ronchi A, Giannetti C, Ferrini G, Rurali R, et al. Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach. Phys Rev B 2017;95:1–12. https://doi.org/10.1103/PhysRevB.95.085306.

    CrossRef  Google Scholar 

  142. Gandolfi M, Crut A, Medeghini F, Stoll T, Maioli P, Vallée F, et al. Ultrafast Thermo-Optical Dynamics of Plasmonic Nanoparticles. J Phys Chem C 2018;122:8655–66. https://doi.org/10.1021/acs.jpcc.8b01875.

    CrossRef  Google Scholar 

  143. Feynman R. There’s Plenty of Room at the Bottom. Eng Sci 1960;23:22–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Tagliaro, I., Cerpelloni, A., Nikiforidis, VM., Pillai, R., Antonini, C. (2022). On the Development of Icephobic Surfaces: Bridging Experiments and Simulations. In: Marengo, M., De Coninck, J. (eds) The Surface Wettability Effect on Phase Change. Springer, Cham. https://doi.org/10.1007/978-3-030-82992-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82992-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82991-9

  • Online ISBN: 978-3-030-82992-6

  • eBook Packages: EngineeringEngineering (R0)