Skip to main content

In situ Assessment of Conservation Treatments and Monitoring of Their Effectiveness

  • 203 Accesses

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

In this chapter an overview of the main invasive/non-invasive techniques used in situ for the evaluation of conservation treatments is provided. The conservation treatments considered are cleaning, consolidation, and protection of stone, mainly for architectural heritage. After a brief introduction, a paragraph is dedicated to the current process of drafting the standards, starting from previous experiences. In each paragraph dealing with conservation treatments, a reminder of commonly used laboratory tests carried out on stone samples, following either standardized protocols or not, are briefly reported. Details about testing protocols and threshold values for the selection of the best conservation treatment and for the monitoring will be described.

This chapter is not a technical description of each single technique but rather an introduction to the different possibilities of application of in situ methods.

Keywords

  • Stone
  • Conservation treatments
  • In situ evaluation
  • Monitoring

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_8
  • Chapter length: 44 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11

Notes

  1. 1.

    UNI-Ente Nazionale Italiano di Unificazione-Italy; IBN/BIN-Institut Belge de Normalisation-Belgium; AFNOR-Association Francaise de Normalisation-France; BSI-British Standard Institution-UK; AENOR-Asociacion Espanola de Normalisation-Spain; NEN-Nederlands Normalisatie Instituut-The Netherlands; NSF- Norges Stadardiseringsforbund-Norway; SNV-Switzerland; CSNI-Czech Standards Institute-Czech Republic.

References

  1. Sasse HR, Snethlage R. Methods for the evaluation of stone conservation treatments. In Saving Our Architectural Heritage: The Conservation of Historic Stone Structures; Report of the Dahlem Workshop on Saving Our Architectural Heritage, The Conservation of Historic Stone Structures, Berlin, March 3–8, 1996, Baer N. S., Snethlage R. eds., John Wiley & Sons, Chichester and New York 1997; 223–244.

    Google Scholar 

  2. Doehne E, Price CA. Stone Conservation – An overview of current research. 2nd ed. The Getty Conservation Institute Los Angeles; 2010.

    Google Scholar 

  3. Svahn H. Final Report for the Research and Development Project Non-Destructive Field Tests in Stone Conservation. Literature Study. Riksantikvarieämbetet, Stockholm, Sweden; 2006.

    Google Scholar 

  4. Menéndez B. Non-destructive techniques applied to monumental stone conservation. In: Márquez F, Papaelias M, Zaman N, editors, Non-destructive testing, In: Tech. Rijeka: 2016, 173–213. https://doi.org/10.5772/62408.

  5. Chastre C, Ludovico-Marques M. Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments. In: Makhlouf ASH, Aliofkhazraei M, editors.. Handbook of Materials Failure Analysis. Butterworth-Heinemann Oxford (UK). 2018. 255–294. https://doi.org/10.1016/B978-0-08-101928-3.00013-6.

  6. Zendri E, Falchi L, Izzo FC, Morabito ZM, Driussi G. A review of common NDTs in the monitoring and preservation of historical architectural surfaces, Int J Architect Herit. 11:7, 2017, 987–1004. https://doi.org/10.1080/15583058.2017.1331477.

    Google Scholar 

  7. Wheeler G. Alkoxysilanes and the consolidation of stone. Los Angeles, The Getty Conservation Institute, 2005.

    Google Scholar 

  8. Laurenzi Tabasso M. Rossi Doria Rota P. Proposte per un metodo di controllo dei trattamenti da effettuare su opere d’arte in pietra. L’ingegnere 1974;4:124–135.

    Google Scholar 

  9. Slater GA. Stone preservative: methods of laboratory testing and preliminary performances criteria. NBS Technical Note 941, 1977, Washington D.C.

    Google Scholar 

  10. Various Authors, International Colloquium Methods of evaluating products for the conservation of porous building materials in monuments, Rome, 19–21 June 1995, Preprints, ISBN 92-9077-131-3.

    Google Scholar 

  11. Laurenzi Tabasso M. Introduction to the results of the round table discussion. Science and Technology for Cultural Heritage. 1996;5(1):53–56.

    Google Scholar 

  12. Rainer Sasse H, Snethlage R. Evaluation of stone consolidation treatments. Science and Technology for Cultural Heritage. 1996;5(1):85–92.

    Google Scholar 

  13. RILEM Commission 25-PEM. Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Materials and Structures 1980;13(3):175–253.

    Google Scholar 

  14. Charola AE. De Witte E. Laurenzi Tabasso M. Establishing international standards for the quality control of conservation materials and for qualifying practioners applying them. In Saving Our Architectural Heritage. Berlin, Wiley. 1996;245–254.

    Google Scholar 

  15. EN 45020:2006, Standardization and related activities - General vocabulary (ISO/IEC Guide 2:2004).

    Google Scholar 

  16. UNI/CT033/SC01 Beni Culturali, http://store.uni.com/catalogo/norme/root-categorie-tc/uni/uni-ct-033/uni-ct-033-sc-01?tpqual[3]=zz. Accessed 01 Oct 2020.

  17. CEN TC346- Conservation of Cultural Heritage, https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:411453&cs=11079A55D70F8377E3942E1C6704C7664. Accessed 01 Oct 2020.

  18. Fassina V. European Technical Committee 346: Conservation of cultural property: Updating of the activity after a three-year period. In 9th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage: Art, Jerusalem, May 25–30, 2008; 1–9.

    Google Scholar 

  19. Fassina V., CEN TC 346 Conservation of Cultural Heritage-Update of the activity after a eight year period. Engineering Geology for Society and Territory. Springer, Cham. 2015;8:37–41. https://doi.org/10.1007/978-3-319-09408-3_3.

  20. CEN/TC346 Published standards. https://standards.cen.eu/dyn/www/f?p=CENWEB:84:::NO::: Accessed 01 Oct 2020.

  21. Delgado Rodrigues J, Grossi A, Compatibility: building up an operative concept for masonry conservation. In: Delgado Rodrigues J, Mimoso JM, editors. Theory and Practice in Conservation. LNEC, 2006; 139–148.

    Google Scholar 

  22. Delgado Rodrigues J, Grossi A. Indicators and rating for the compatibility assessment of conservation actions. J Cult Herit. 2007;8:32–43.

    Google Scholar 

  23. EN 15898:2011, Conservation of cultural heritage- Main general terms and definitions, 2011.

    Google Scholar 

  24. Revez MJ, Delgado Rodrigues J. Incompatibility risk assessment procedure for the cleaning of built heritage. J Cult. Herit. 2016;18:219–228.

    Google Scholar 

  25. Vergés-Belmin V. Towards a definition of common evaluation criteria for the cleaning of porous building materials: a review. Science and Technology for Cultural Heritage. 1996;5(1):69–83.

    Google Scholar 

  26. Vergés-Belmin V. Pseudomorphism of gypsum after calcite: A new textural feature accounting for the marble sulphation mechanism. Atmospheric Environment – Part A 1994;28(2):295–304.

    Google Scholar 

  27. Smith BJ, Gomez-Heras M. McCabe S. Understanding the decay of stone-built cultural heritage. Prog Phys Geog. 2008;32(4):439–461.

    Google Scholar 

  28. Appolonia L. Bertone A. Brunetto A. Vaudan D. The St. Orso Priory: the comparison and testing of cleaning methods. J Cult Herit. 2000:1:S105–S110.

    Google Scholar 

  29. Moropoulou A, Labropoulos KC, Delegou ET, Karoglou M, Bakolas A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr Build Mater. 2013;48:1222–1239.

    Google Scholar 

  30. Moropoulou A, Delegou ET, Avdelidis NP, Koui M. Assessment of cleaning conservation interventions on architectural surfaces using an integrated methodology. In: Vandiver P, Goodway M, Druzik JR, Mass JL, editors. Materials issues in art and archaeology VI, vol. 712. Pittsburgh: Publ. Materials Research Society. 2002; 69–76.

    Google Scholar 

  31. Iglesias-Campos MÁ, Prada Pérez JL, Fortes SG. Microblasting cleaning for façade repair and maintenance: Selecting technical parameters for treatment efficiency. Constr Build Mater. 2015;94:605–612.

    CAS  Google Scholar 

  32. Pozo-Antonio JS, Ramil A, Rivas T, López AJ, Fiorucci MP. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Constr Build Mater. 2016, 112, 682–690. https://doi.org/10.1016/j.conbuildmat.2016.02.195.

    CAS  CrossRef  Google Scholar 

  33. Coe J, Sherwood S, Messerich JA, Andersen A, Mossotti V. Measuring stone decay with close range photogrammetry. In: Delgado RJ, Fernando H, Telmo JF, editors. Proc. of the 7th International Congress on Deterioration and Conservation of Stone;. Lisbon, Laboratorio Nacional de Engenharia; Lisbon, 1992;2:917–926.

    Google Scholar 

  34. Tiano P, Tapete D, Matteini M, Ceccaroni F. The microphotogrammetry: a new diagnostic tool for on site monitoring of monumental surfaces. In: Tiano P, Pardini C, editors. In situ monitoring of monumental surfaces. Edifir-Edizioni Firenze, Florence. 2008;97–106.

    Google Scholar 

  35. Manganelli Del Fà R, Riminesi C, Tiano P. Monitoring of surface pattern of artistic and architectural artefacts by means of ultra-close range photogrammetry, Kermes Quaderni ESRARC2014, 6th European Symposium on Religious Art, Restoration and Conservation, Proceedings Book, Nardini Editore, 2014;164–167. ISBN: 978-88-404-4365-2.

    Google Scholar 

  36. Gaspar P, Hubbard C, McPhail D, Cummings A. A topographical assessment and comparison of conservation cleaning treatments. J Cult Herit. 2003;4:294s–302s.

    Google Scholar 

  37. Iglesias-Campos M., Prada Pérez JL., Fortes SG. Spot analysis to determine technical parameters of microblasting cleaning for building materials maintenance. Const. Build. Mater. 2017;132:21–32.

    Google Scholar 

  38. Rousset B, Gal G, Girardet F, Béal C, Constantin J. Roughness measurement applied to the monitoring and the follow-up of building cleaning. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;603–610.

    Google Scholar 

  39. Vazquez-Calvo C, Alvarez de Buergo M, Fort R, Varas-Muriel MJ. The measurements of surface roughness to determine the suitability of different methods for stone cleaning. J Geophys Eng. 2012;9(4):S108–S117. https://doi.org/10.1088/1742-2132/9/4/S108.

    CrossRef  Google Scholar 

  40. DIN 4768:1990, Determination of surface roughness values of the parameters R[a], R[z], R[max] by means of electrical contact (stylus) instruments; terminology, measuring conditions. 1990, German Institute for Standardisation (Deutsches Institut für Normung), Germany.

    Google Scholar 

  41. Simon S, Snethlage R. The first stages of marble weathering, preliminary results after short-term exposure of nine months. In Proceedings of the International RILEM/UNESCO Congress Conservation of Stone and Other Materials. Spon, Paris. 2003;51–58.

    Google Scholar 

  42. Aires-Barros L, Mauricio A, Figueiredo C. Profilometry and image application to “in situ” study of monuments stone decay problems. Fassina V, Ott H, Zezza F, editors. The 3rd International Symposium on The Conservation of Monuments in the Mediterranean Basin. Soprintendenza ai Beni Culturali e Storici di Venezia, Venice. 1994;19–24.

    Google Scholar 

  43. Avdelidis NP, Delegou ET, Almond DP, Moropoulou A. Surface roughness evaluation of marble by 3D laser profilometry and pulsed thermography. NDT & E Inter. 2004;37(7):571–575.

    CAS  Google Scholar 

  44. Colombo C, Daffara C, Fontana R, Gambino MC, Mastroianni M, Pampaloni E, Realini M, Sansonetti A. Evaluation by laser micro-profilometry of morphological changes induced on stone materials by laser cleaning. In: Nimmrichter J, Kautek W, Schreiner M, editors. Proc. of Conference Lasers in the Conservation of artworks: LACONA VI, Vienna, Austria, Sept. 21–25, 2005. Springer Proceedings in Physics 116. Springer, Berlin and New York. 2007;523–526.

    Google Scholar 

  45. Charola AE, Grissom CA, Erder E, Washowiak M., Oursrel D. Measuring surface roughness: three techniques. Proc. of the 8th International Congress on the Deterioration and Conservation of Stone. Möller, Druck und Verlag, Berlin.1996;1421–1434.

    Google Scholar 

  46. Grissom CA, Charola AE, Washowiak MJ, Measuring surface roughness on stone; back to basics. Stud Conserv. 2000;45:73–84.

    Google Scholar 

  47. Mairinger F. UV-, IR-, and X-ray imaging.. In: Janssen K, Van Grieken R, editors. Non-destructive microanalysis of cultural heritage materials. Elsevier, The Netherlands. 2004;42:15–72.

    Google Scholar 

  48. Dyer J, Verri G, Cupitt J. Multispectral imaging in reflectance and photo-induced luminescence modes: a user manual. 2013. http://www.britishmuseum.org/pdf/charisma-multispectral-imaging-manual-013.pdf. Accessed 15 January 2020.

    Google Scholar 

  49. Warda J, Frey F, Heller D, Kusheld D, Vitale T, Weaver G. Ultraviolet photography. In: Warda J, editor, AIC guide to digital photography and conservation documentation. 2nd edn: American Institute for Conservation of Historic and Artistic Works, Washington DC (USA), 2011.

    Google Scholar 

  50. Aldrovandi A, Massi M, Porcinai S. Analysis through photographic documentation of ultraviolet fluorescence. In: Bracci S, Falletti F, Matteini M, Scopigno R, editors. Exploring David-Diagnostic tests and state of conservation, Giunti, Firenze (IT), 2004;150–153. ISBN 88-09-03325-6.

    Google Scholar 

  51. Comelli D, Cubeddu R, Valentini G, Toniolo L. Fluorescence lifetime imaging and spectroscopy: a new analytical technique for non-destructive analysis of art surfaces. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;611–618.

    Google Scholar 

  52. Pouli P, Zafiropoulos V, Balas C, Doganis Y, Galanos A. Laser cleaning of inorganic encrustation on excavated objects: evaluation of cleaning result by means of multi-spectral imaging. J Cult Herit. 2003;4:338–342

    Google Scholar 

  53. Papadakis V, Loukaiti A, Pouli P. A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J Cult Herit. 2010;11:325–328.

    Google Scholar 

  54. Pozo-Antonio JS, Fiorucci MP, Ramil A, Rivas T, López AJ. Hyperspectral imaging as a non destructive technique to control the laser cleaning of graffiti on granite. J Nondestruct Eval. 2016;35–44. https://doi.org/10.1007/s10921-016-0361-9.

  55. Janssens K. X-ray based methods of analysis. Comp Anal Chem. 2004;42:129–226.

    CAS  Google Scholar 

  56. Sianoudis I, Drakaki E, Hein A. Educational X-ray experiments and XRF measurements with a portable setup adapted for the characterization of cultural heritage objects. Eur J Phys. 2010;31(3):419–431. https://doi.org/10.1088/0143-0807/31/3/001.

    CrossRef  Google Scholar 

  57. Shugar AN, Mass J., editors. Handheld XRF for art and archaeology. Studies in Archeological Science 3. Belgium: Leuven University Press, 2012. ISBN: 978 90 5867 9345.

    Google Scholar 

  58. Bezur A, Lee L, Loubser M, Trentelman K. Handheld XRF in Cultural Heritage, J. Paul Getty Trust and Yale University. 2020

    Google Scholar 

  59. Buccolieri G, Castellano., Donativi M, Quarta S, Mapping sulphates on the David using portable EDXRF. In: Bracci S, Falletti F, Matteini., Scopigno R. editors. Exploring David - Diagnostic tests and state of conservation, Giunti, Firenze (IT), 2004;161–164. ISBN 88-09-03325-6.

    Google Scholar 

  60. Castellano A, Buccolieri G, Quarta S, Donativi M. Portable EDXRF surface mapping of sulfate concentration on Michelangelo’s David. X-Ray Spectrom. 2006;35:276–279. https://doi.org/10.1002/xrs.907.

    CAS  CrossRef  Google Scholar 

  61. Diana M, Gabrielli N, Ridolfi S. Sulfur determination on stone monuments with a transportable EDXRF system. X-Ray Spectrom. 2007;36:424–428.

    CAS  Google Scholar 

  62. Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L. Spectroscopic techniques in cultural heritage conservation: a survey, Appl Spectrosc Rev. 2005;40(3):187–228.

    CAS  Google Scholar 

  63. Derrick MR, Stulik D., Landry JM. Infrared spectroscopy in conservation science. The Getty Conservation Institute, Los Angeles (USA). 1999.

    Google Scholar 

  64. Ricci C, Miliani C, Brunetti BG, Sgamellotti A. Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta. 2006;69:1221–1226.

    CAS  Google Scholar 

  65. Rosi F, Cartechini L, Sali D, Miliani C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR. Physical Sciences Reviews, 4(11) Walter de Gruyter GmbH, Berlin/Boston. 2019. https://doi.org/10.1515/psr-2018-0006.

  66. Magrini D, Bartolozzi G, Bracci S, Carlesi S, Cucci C, Picollo M. Evaluation of the efficacy and durability of the “Barium hydroxide method” after 40 years. Multi-analytical survey on the crocifissione by Beato Angelico. J Cult Herit., in press. https://doi.org/10.1016/j.culher.2020.04.006

  67. Edwards HGM, de Faria DLA. Infrared, Raman microscopy and fibre-optic Raman spectroscopy (FORS).. In: Janssen K, Van Grieken R, editors. Non-destructive microanalysis of Cultural heritage materials. Elsevier, The Netherlands. 2004;42:359–395.

    Google Scholar 

  68. Casadio F, Daher C, Bellot-Gurlet L. Raman Spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. In: Mazzeo R. editor. Analytical Chemistry for Cultural Heritage. Topics in Current Chemistry Collections Springer, Cham. 2017;161–211. https://doi.org/10.1007/978-3-319-52804-5_5.

    Google Scholar 

  69. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM. Comparative study of mobile Raman instrumentation for art analysis. Anal Chim Acta. 2007;588:108–116.

    CAS  Google Scholar 

  70. Martìnez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM. Evaluation of three different mobile Raman microscopes employed to study deteriorated civil building stones. J Raman Spectrosc. 2008;39:1018–1029. https://doi.org/10.1002/jrs.1941.

    CAS  CrossRef  Google Scholar 

  71. Martìnez-Arkarazo I, Sarmiento A, Usobiaga A, Angulo M, Etxebarria N, Madariaga JM. Thermodynamic and Raman spectroscopic speciation to define the operating conditions of an innovative cleaning treatment for carbonated stones based on the use of ion exchangers—A case study. Talanta. 2008;75:511–516.

    Google Scholar 

  72. Martínez-Arkarazo I, Sarmiento A, Maguregui M, Castro K, Madariaga JM. Portable Raman monitoring of modern cleaning and consolidation operations of artworks on mineral supports. Anal Bioanal Chem., 2010;397:2717–2725. https://doi.org/10.1007/s00216-010-3610-2.

    CAS  CrossRef  Google Scholar 

  73. Klein S, Stratoudaki T, Zafiropulos V, Hildenhagen J, Dickmann K, Lehmkuhl Th. Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sandstone and stained glass Appl Phys A. 1999;69:441–444. https://doi.org/10.1007/s003399900102.

    CAS  CrossRef  Google Scholar 

  74. Siano S, Agresti J, Cacciari I, Ciofini D, Mascalchi M, Osticioli J, Mencaglia AA. Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Appl Phys A. 2012;106:419–446. https://doi.org/10.1007/s00339-011-6690-8.

    CAS  CrossRef  Google Scholar 

  75. Senesi GS, Carrara I, Nicolodelli G, Milori DMBP, De Pascale O. Laser cleaning and laser-induced breakdown spectroscopy applied in removing and characterizing black crusts from limestones of Castello Svevo, Bari, Italy: a case study. Microchem J. 2016;124:296–305.

    CAS  Google Scholar 

  76. Weibring P, Johansson T, Edner H, Svanberg S, Sunder B, Raimondi V, Cecchi G, Pantani L. Fluorescence lidar imaging of historical monuments. Appl Optics. 2001;40:6111–6120.

    CAS  Google Scholar 

  77. Cecchi G, Pantani L, Raimondi V, Tomaselli L, Lamenti G, Tiano P, Chiari R. Fluorescence lidar technique for the remote sensing of stone monuments. J Cult Herit. 2000;1:29–36.

    Google Scholar 

  78. Gobernado-Mitre I, Prieto AC, Zafiropulos V, Spetsidou Y, Fotakis C. On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence. Appl Spectrosc 1997;51:1125. https://doi.org/10.1366/0003702971941944.

    CAS  CrossRef  Google Scholar 

  79. Maravelaki PV, Zafiropulos V, Kilikoglou V, Kalaitzaki M, Fotakis C. Laser-induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim. Acta Part B, 1997:52(1): 41–53.

    Google Scholar 

  80. Avdelidis NP, Moropoulou A. Applications of infrared thermography for the investigation of historic structures. J Cult Herit. 2004;5:119–127.

    Google Scholar 

  81. Delegou ET, Krokida M, Avdelidis NP, Moropoulou A. Assessment of cleaning interventions- on marble surfaces using pulsed thermography. In: Paipetis AS, Matikas TE, Aggelis DG, Van Hemelrijck D, editors. Emerging technologies in non-destructive testing, London: CRC Press. 2012;31–36. ISBN: 978-0-415-62131-1.

    Google Scholar 

  82. Jankowska M, Sliwiński G. Acoustic monitoring for the laser cleaning of sandstone. J Cult Herit. 2003;4:65s–71s.

    Google Scholar 

  83. Tserevelakis GJ, Pozo-Antonio JS, Siozosa P, Rivas T, Pouli P, Zacharakis G. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cult Herit. 2019;35:108–115.

    Google Scholar 

  84. Various Authors, SWBSS 2014, Proc. of 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures, Brussel (BE), 14–16 October 2014, De Clercq H. ed. ISBN 978-2-930054-24-7.

    Google Scholar 

  85. Various Authors, SWBSS 2017, Proc. of 4th International Conference on Salt Weathering of Buildings and Stone Sculptures, Potsdam (GE), 20–22 September 2017, Laue S. ed. ISBN 978-3-934329-88-1.

    Google Scholar 

  86. SWBSS 2021, https://www.tudelft.nl/en/architecture-and-the-built-environment/current/events/swbss-2021/. Accessed 26 Feb 2021.

  87. Price C, Brimblecombe P. Preventing salt damage in porous materials. In: Ray RA, Smith P, editors. Preventive Conservation: Practice, Theory and Research, The International Institute for Conservation of Historic and Artistic Works, London, 1994;90–93.

    Google Scholar 

  88. Charola AE. Salt in the deterioration of porous materials, J Am Inst Conserv. 2000; 39:327–343.

    Google Scholar 

  89. Doehne E, Salt weathering: a selective review. In: Siegesmund S, Weiss T, Vollbrecht A, editors. Special Publication, Geol. Soc., 205, Natural Stones, Weathering Phenomena, Conservation Strategies and Case Studies, London 2002;51–64.

    Google Scholar 

  90. Borrelli E. Standardizzazione di un metodo di estrazione di sali da supporti porosi e suo utilizzo a scopo diagnostico. 3rd International Symposium on The Conservation of Monuments in the Mediterranean Basin. Venice: Sopraintendenza ai Beni Artistici e Storici di Venezia.1994;163–167.

    Google Scholar 

  91. Borrelli E, Urland A. ARC Laboratory handbook: porosity, salts, binders, colour. Conservation of Architectural Heritage, Historic Structures and Materials, ICCROM, International Centre for the Study of the Preservation and Restoration of Cultural Property, Rome, 1999.

    Google Scholar 

  92. Vettori S, Bracci S, Cantisani E, Riminesi C, Sacchi B, D’Andria F. A multi-analytical approach to investigate the state of conservation of the wall paintings of Insula 104 in Hierapolis (Turkey). Microchem J. 2016;128:279–287.

    CAS  Google Scholar 

  93. Manganelli Del Fa R, Riminesi C, Rescic S, Tiano P, Sansonetti A. Non-destructive testing to perform service of the evaluation of conservation works. In: Aggelis DG, Van Hemelrijck D, Vanlanduit S, Anastasopoulos A, Philippidis T, editors., Proc. of the 6th Inter. Conf. on Emerging Technologies in Non-destructive Testing (ETNDT 2016), CRC Press, Boca Raton (USA). 2016;457–463.

    Google Scholar 

  94. Riminesi C, Olmi R. Diagnostics and monitoring of moisture and salt in porous materials by evanescent field dielectrometry. In: Laue S, editor. Proc. of SWBSS 2017, 4th International Conference on Salt Weathering of Buildings and Stone Sculptures. Potsdam, Germany. 20–22 September 2017. Verlag der Fachhochschule, Potsdam (DE). 2017;49–56.

    Google Scholar 

  95. Johnston-Feller R. Color science in the examination of museum objects: nondestructive procedures. Tools for conservation. The Getty Conservation Institute, Los Angeles (CA, USA). 2001.

    Google Scholar 

  96. Munsell AH, Atlas of the Munsell color system. Wadsworth, Howland & Co., Inc. Printers, Malden MA (USA). 1907.

    Google Scholar 

  97. Smith T, Guild., The C.I.E. colorimetric standards and their use, Trans. Opt. Soc. XXXIII(3) 1931–1932;73–134.

    Google Scholar 

  98. Schanda J. CIE Colorimetry. 25–78. In: Schanda J, editor. Colorimetry: Understanding the CIE system. John Wiley & Sons, Inc., Hobokeny, New Jersey (USA). 2007.

    Google Scholar 

  99. Luo M., Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Col Res Appl. 2001;26:340–350.

    Google Scholar 

  100. Mokrzycki WS, Tatol M. Color difference Delta E - A survey. Machine Graph Vis. 2011;20(4):383–411.

    Google Scholar 

  101. Fort R, Mingarro F, Lopez de Azcona MC, Rodriguez Blanco J. Chromatic parameters as performance indicators for stone cleaning techniques. Color Res Applic. 2000;25:442–446.

    Google Scholar 

  102. Labouré M, Bromblet P, Orial G, Wiedemann G, Simon-Boissond C. Assessment of laser cleaning rate on limestones and sandstones. J Cult Herit. 2000;1:S21–S27.

    Google Scholar 

  103. Esbert RM, Grossi CM, Rojo A, Alonso FJ, Montoto M, Ordaz J, Pérez de Andrés MC, Escudero C, Barrera M, Sebastián E, Rodríguez-Navarro C, Elert K. Application limits of Q-switched Nd:YAG laser irradiation for stone cleaning based on colour measurements. J Cult Herit. 2003;4:50s–55s.

    Google Scholar 

  104. Selwitz C. Epoxy Resins in Stone Conservation. 1992, The Getty Conservation Institute.

    Google Scholar 

  105. Melo MJ, Bracci S, Camaiti M, Chiantore O, Piacenti F. Photodegradation of acrylic resins used in the conservation of stone, Pol Deg Stab. 1999;66:23–30.

    CAS  Google Scholar 

  106. Pastorelli G, Cucci C, Garcia O, Piantanida G, Elnaggar A, Cassar M, Strlič M. Environmentally induced colour change during natural degradation of selected polymers, Pol Deg Stab. 2014;107:198–209. https://doi.org/10.1016/j.polymdegradstab. 2013.11.007.

  107. Tesser E, Lazzarini L, Bracci S. Investigation on the chemical structure and ageing transformations of the cycloaliphatic epoxy resin EP2101 used as stone consolidant, J Cult Herit. 2018;31:72–82. https://doi.org/10.1016/j.culher.2017.11.002.

    Google Scholar 

  108. Bromblet P, Labouré M, Orial G. Diversity of the cleaning procedures including laser for the restoration of carved portals in France over the last 10 years. J Cult Herit. 2003;4:17s–26s.

    Google Scholar 

  109. Vergés-Belmin V, Rolland O, Leroux L. Can we be confident in colour measurements performed outdoors? In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008;539–546.

    Google Scholar 

  110. Klein S, Fekrsanati F, Hildenhagen J, Dickmann K, Uphoff H, Marakis Y, Zafiropoulos V. Discolouration of marble during laser cleaning by Nd:YAG laser wavelengths. Appl Surf Sci. 2001;171:242–251.

    CAS  Google Scholar 

  111. Vergès-Belmin V, Dignard C. Laser yellowing: myth or reality. J Cult Herit. 2003;4:238s-244s.

    Google Scholar 

  112. EN 15886:2010, Conservation of cultural heritage - Test methods – Colour measurement of surfaces.

    Google Scholar 

  113. Ďoubal J. Cleaning stone - the possibilities for an objective evaluation. In: Hughes J, Howind T, editors. Science and Art: A Future for Stone: Proc. of the 13th International Congress on the Deterioration and Conservation of Stone. University of the West of Scotland. Paisley, UK. 2016;729–736.

    Google Scholar 

  114. Fassina V. General criteria for the cleaning of stone: theoretical aspects and methodology of application. In: Zezza F, editor. Stone Material in Monuments: Diagnosis and Conservation. Scuola Universitaria C.U.M. Conservazione dei Monumenti; Heraklion, Crete. Mario Adda Editore (Bari, IT). 1993;126–132.

    Google Scholar 

  115. Mossotti VG, Eldeeb AR, Fries TL, Coombs MJ, Naude VN, Soderberg L, Wheeler GS. The effect of selected cleaning techniques on Berkshire Lee marble; A scientific study at Philadelphia City Hall, U.S. Geological Survey, Prof. Paper 1635, Virginia 2002. http://geopubs.wr.usgs.gov/prof-paper/pp1635/. Accessed 2 Oct 2020.

  116. Delegou ET, Avdelidis NP, Karaviti E, Moropoulou A. NDT&E techniques and SEM-EDS for the assessment of cleaning interventions on Pentelic marble surfaces. X-Ray Spectrom. 2008;37 (4):435–443.

    CAS  Google Scholar 

  117. Mecchi AM, Poli T, Realini M, Sansonetti A. A proposal for a common approach in choosing test for the protocol evaluation of cleaning methods. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008; 425–433.

    Google Scholar 

  118. Delegou ET, Moropoulou A. Evaluation, criteria and decision making on cleaning interventions of marble surfaces. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008;1179–1188.

    Google Scholar 

  119. Delegou ET, Kiranoudis Ch, Sayas J, Moropoulou A. Developing an integrated decision-making system for the assessment of cleaning interventions on marble architectural surfaces. Proc. of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012. http://iscs.icomos.org/stonecon.html. Accessed 2 Oct 2020.

  120. Delegou ET, Ntoutsi I, Kiranoudis CT, Sayas J, Moropoulou A. Advanced and novel methodology for scientific support on decision-making for stone cleaning. In: Hosseini M, Karapanagiotis I, editors. Advanced Materials for the Conservation of Stone. Springer International Publishing AG. 2018;299–234. https://doi.org/10.1007/978-3-319-72260-3_14.

  121. Matteini M, Bracci S. Results of preliminary cleaning tests. In: Bracci S, Falletti F, Matteini M, Scopigno R, editors. Exploring David - Diagnostic tests and state of conservation. Giunti, Firenze (IT), 2004;234–237. ISBN 88-09-03325-6.

    Google Scholar 

  122. Hauff G, Kozub P, D’ham G. Which cleaning method is the most appropriate one? A systematic approach to the assessment of cleaning test panels. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008;381–388.

    Google Scholar 

  123. EN 17488:2020, Conservation of cultural heritage - Procedure for the analytical evaluation and selection of cleaning methods for porous inorganic materials used in cultural heritage.

    Google Scholar 

  124. Young ME, Ball J, Laing RA. Quantification of the long-term effects of stone cleaning on decay of building sandstones. In: Fassina V, editor. Proc. of the 9th International Congress on Deterioration and Conservation of Stone, 19–24 June 2000, Venice (IT). Elsevier Science BV, Amsterdam, The Netherlands. 2000;179–186.

    Google Scholar 

  125. Young ME, Ball J, Urquhartb DCM, Laing RA. Maintenance and repair issues for stone cleaned sandstone and granite building façades. Build Environ. 2003;38:1125–1131.

    Google Scholar 

  126. Sanmartín P, Rodríguez A. Aguiar U. Medium-term field evaluation of several widely used cleaning-restoration techniques applied to algal biofilm formed on a granite-built historical monument. Int Biodet Biodegr. 2020;147:104870. https://doi.org/10.1016/j.ibiod.2019.104870.

  127. Perez-Monserrat EM, Fort R, Varas-Muriel MJ. Monitoring façade soiling as a maintenance strategy for the sensitive built heritage. Intern J Architec Herit. 2018;12(5):816–827. https://doi.org/10.1080/15583058.2017.1419312.

    CrossRef  Google Scholar 

  128. Delgado Rodrigues J. Consolidation of decayed stones. A delicate problem with few practical solutions. Proc. Int. Seminar on Historical Constructions, Guimarães. 2001;1–13.

    Google Scholar 

  129. IPERION-CH -Integrated Platform for the European Research Infrastructure ON Cultural Heritage, n. 654028, 2015–2019. www.iperionch.eu. Accessed 01 Aug 2020.

  130. Praticò Y, Caruso F., Delgado Rodrigues J, Girardet F, Sassoni E, Scherer GW, Vergès Belmin V, Weiss NR, Wheeler GW, Flatt R.J. Stone consolidation: a critical discussion of theoretical insights and field practice. RILEM Technical Letters 2019;4:145–153. https://doi.org/10.21809/rilemtechlett.2019.101.

  131. Dei L, Salvadori B. Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit. 2006;7:110–115. https://doi.org/10.1016/j.culher.2006.02.001.

    CrossRef  Google Scholar 

  132. Tiano P, Cantisani E, Sutherland I, Paget JM. Biomediated reinforcement of weathered calcareous stones. J Cult Herit. 2006;7:49–55. https://doi.org/10.1016/j.culher.2005.10.003.

    CrossRef  Google Scholar 

  133. Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N, Agioutantis Z, Maurigiannakis S, Korakaki D. A comparative study of porous limestones treated with silicon-based strengthening agents. Prog Org Coat. 2008;62:49–60. https://doi.org/10.1016/j.porgcoat.2007.09.020.

    CAS  CrossRef  Google Scholar 

  134. Karatasios I, Theoulakis P, Kalagri A, Sapalidis A, Kilikoglou V. Evaluation of consolidation treatments of marly limestones used in archaeological monuments. Constr Build Mater. 2009;23:2803–2812. https://doi.org/10.1016/j.conbuildmat.2009.03.001.

    CrossRef  Google Scholar 

  135. Kim EK, Won J, Do J, Kimc SD, Kang YS. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit. 2009;10:214–221. https://doi.org/10.1016/j.culher.2008.07.008.

    CrossRef  Google Scholar 

  136. López-Arce P, Gomez-Villalba LS, Pinho L, Fernández-Valle ME, Álvarez de Buergo M, Fort R. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques. Mat Charact. 2010;61:168–184. https://doi.org/10.1016/j.matchar.2009.11.007.

    Google Scholar 

  137. Matteini M, Rescic S, Fratini F, Botticelli G. Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage A preliminary research. Int J Architect Herit. 2011;5(6):717–736. https://doi.org/10.1080/15583058.2010.495445.

    CrossRef  Google Scholar 

  138. Sassoni E, Naidu S, Scherer GW. The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J Cult Herit. 2011;12:346–355. https://doi.org/10.1016/j.culher.2011.02.005.

    CrossRef  Google Scholar 

  139. Daniele V, Taglieri G. Synthesis of Ca(OH)2 nanoparticles with the addition of Triton X-100. Protective treatments on natural stones: Preliminary results. J Cult Herit. 2012;13:40–46. https://doi.org/10.1016/j.culher.2011.05.007.

    CrossRef  Google Scholar 

  140. Pérez NA, Lima E, Boscha P, Méndez-Vivar J. Consolidating materials for the volcanic tuff in western Mexico. J Cult Herit. 2012;15:352–358. https://doi.org/10.1016/j.culher.2013.07.010.

    CrossRef  Google Scholar 

  141. Perito B, Marvasi M, Barabesi C, Mastromei G, Bracci S, Vendrell M, Tiano P. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. J Cult Herit. 2014;15(4):345–351. https://doi.org/10.1016/j.culher.2013.10.001.

    CrossRef  Google Scholar 

  142. Sassoni E, Franzoni E, Pigino B, Scherer GW, Naidu S. Consolidation of calcareous and siliceous sandstones by hydroxyapatite: Comparison with a TEOS-based consolidant. J Cult Herit. 2013;14:e103–e108. https://doi.org/10.1016/j.culher.2012.11.029.

    CrossRef  Google Scholar 

  143. Licchelli M, Malagodi M, Weththimuni M, Zanchi C. Nanoparticles for conservation of bio-calcarenite stone. Appl Phys A. 2014;114:673–683. https://doi.org/10.1007/s00339-013-7973-z.

    CAS  CrossRef  Google Scholar 

  144. Naidu S, Liu C, Scherer GW. Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. J Cult Herit. 2015;16:94–101. https://doi.org/10.1016/j.culher.2014.01.001.

    CrossRef  Google Scholar 

  145. Natali I, Tomasin P, Becherini F, Bernardi A, Ciantelli C, Favaro M, Favoni O, Forrat Pérez Olteanu JD, Romero Sanchez MD, Vivarelli A, Bonazza A. Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Herit Sci. 2015;3(6). https://doi.org/10.1186/s40494-015-0036-3.

  146. Delgado Rodrigues J, Ferreira Pinto AP Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones. J Cult Herit. 2016;19:467–476. https://doi.org/10.1016/j.culher.2015.10.002.

    CrossRef  Google Scholar 

  147. Zornoza-Indart A, Lopez-Arce P, Leal N, Simão J, Zoghlami K. Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Constr Build Mater. 2016;116:188–202. https://doi.org/10.1016/j.conbuildmat.2016.04.114.

    CAS  CrossRef  Google Scholar 

  148. Borsoi G, Lubelli B, van Hees R, Veiga R, Santos Silva A. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr Build Mater. 2017;142:385–394. https://doi.org/10.1016/j.conbuildmat.2017.03.097.

    CAS  CrossRef  Google Scholar 

  149. Raneri S, Barone G, Mazzoleni P, Alfieri I, Bergamonti L, De Kock T, Cnudde V, Lottici PP, Lorenzi A, Predieri G, Rabot E, Teixeira J. Efficiency assessment of hybrid coatings for natural building stones: advanced and multi-scale laboratory investigation. Constr Build Mater. 2018;180:412–424. https://doi.org/10.1016/j.conbuildmat.2018.05.289.

    CAS  CrossRef  Google Scholar 

  150. Sena da Fonseca B, Ferreira Pinto AP, Piçarra S, Montemor MF. The potential action of single functionalization treatments and combined treatments for the consolidation of carbonate stones. Constr Build Mater. 2018;163:586–599. https://doi.org/10.1016/j.conbuildmat.2017.12.126.

  151. Becerra J, Zaderenko A.P, Ortiz P. Basic protocol for on-site testing consolidant nanoparticles on stone cultural heritage. Heritage. 2019;2:2712–2724. https://doi.org/10.3390/heritage2040168.

  152. Iucolano F, Colella A, Liguori B, Calcaterra D. Suitability of silica nanoparticles for tuff consolidation. Constr Build Mater. 2019;202:73–81. https://doi.org/10.1016/j.conbuildmat.2019.01.002.

    CAS  CrossRef  Google Scholar 

  153. Pozo-Antonio JS, Otero J, Alonso P, Mas i Barberà X. Nanolime- and nanosilica-based consolidants applied on heated granite and limestone: Effectiveness and durability. Constr Build Mater. 2019;201:852–870. https://doi.org/10.1016/j.conbuildmat.2018.12.213.

    CAS  CrossRef  Google Scholar 

  154. Vasanelli E, Calia A, Masieri M, Baldi G. Stone consolidation with SiO2 nanoparticles: Effects on a high porosity limestone. Constr Build Mater. 2019:219:154–163. https://doi.org/10.1016/j.conbuildmat.2019.05.169.

    CAS  CrossRef  Google Scholar 

  155. Badreddine D, Becka K, Brunetauda X, Chaaba A, Al-Mukhtar M. Nanolime consolidation of the main building stone of the archaeological site of Volubilis (Morocco). J Cult Herit. 2020;43:98–107. https://doi.org/10.1016/j.culher.2019.12.006.

    CrossRef  Google Scholar 

  156. Ruffolo SA, Rovella N, Arcudi A, Crupi V, Majolino D, Osanna M, Pace R, Pantuso A, Randazzo L, Ricca M, Ruggieri N, Venuti V, La Russa MF. New insights to assess the consolidation of stone materials used in built heritage: the case study of ancient grafti (Tituli Picti) in the archaeological site of Pompeii. Herit Sci. 2020;8(49). https://doi.org/10.1186/s40494-020-00393-0.

  157. EN 15801:2009 - Conservation of cultural property - Test methods - Determination of water absorption by capillarity.

    Google Scholar 

  158. EN 15802:2009 - Conservation of cultural property - Test methods - Determination of static contact angle.

    Google Scholar 

  159. Liu Y, Liu J. Synthesis of TEOS/PDMS-OH/CTAB composite coating material as a new stone consolidant formulation. Constr Build Mater. 2016;122:90–94. https://doi.org/10.1016/j.conbuildmat.2016.06.069.

    CAS  CrossRef  Google Scholar 

  160. Tiano P, Pardini C, Valutazione in situ dei trattamenti protettivi per il materiale lapideo. Proposta di una nuova semplice metodologia. Arkos. 2004;5:30–36.

    Google Scholar 

  161. UNI 11432:2011 - Cultural heritage - Natural and artificial stone - Determination of the water absorption by contact sponge.

    Google Scholar 

  162. Gherardi F, Gulotta D, Goidanich S, Colombo A, Toniolo L. On-site monitoring of the performance of innovative treatments for marble conservation in architectural heritage. Herit Sci. 2017;5(4). https://doi.org/10.1186/s40494-017-0118-5.

  163. Tesser E, Lazzarini L, Ganzerla R, Antonelli F. The decay of the polysiloxane resin Sogesil XR893 applied in the past century for consolidating monumental marble surfaces. J Cult Herit. 2017;27:107–115. https://doi.org/10.1016/j.culher.2017.03.001.

    CrossRef  Google Scholar 

  164. Delgado Rodrigues J, Ferreira Pinto A.P. Stone consolidation by biomineralisation. Contribution for a new conceptual and practical approach to consolidate soft decayed limestones. J Cult Herit. 2019;39:83–92. https://doi.org/10.1016/j.culher.2019.04.022.

  165. “Marmora Phrygiae”, Metodologie interdisciplinari per la conoscenza e la conservazione. Archeologia del costruito, informatica e scienze chimico-fisiche per la ricostruzione storica dei cantieri dei materiali di una città romana e bizantina dell’Asia Minore, Hierapolis di Frigia”. Project founded by Italian Ministry of Culture, 2012–2015.

    Google Scholar 

  166. Vettori, S, Riminesi C, Cantisani E, Bracci S, Sacchi S. Marbles from Hierapolis: decay, conservation, monitoring of surfaces and environment, In: Ismaelli T, Scardozzi G, editors. Ancient quarries and building sites in Asia Minor.Research on Hierapolis in Phrygia and other cities in south-western Anatolia: archaeology, archaeometry, conservation. Building sites of Hierapolis during the Byzantine age, Edipuglia, Bari (IT). 2016;557–573. https://doi.org/10.4475/819.

    CrossRef  Google Scholar 

  167. EN 16302:2013 - Conservation of Cultural Heritage - Test methods - Measurement of water absorption by pipe method.

    Google Scholar 

  168. EN 16322:2013 - Conservation of Cultural Heritage - Test methods - Determination of drying properties.

    Google Scholar 

  169. Ludovico-Marques M, Chastre C. Effect of consolidation treatments on mechanical behaviour of sandstone. Constr Build Mater. 2014;70:473–482. https://doi.org/10.1016/j.conbuildmat.2014.08.005.

    CrossRef  Google Scholar 

  170. Chen W, Dai P, Yuan P, Zhang J. Effect of inorganic silicate consolidation on the mechanical and durability performance of sandstone used in historical sites. Constr Build Mater. 2016;121:445–452. https://doi.org/10.1016/j.conbuildmat.2016.06.008.

    CAS  CrossRef  Google Scholar 

  171. Ferreira Pinto AP, Delgado Rodrigues J Stone consolidation: The role of treatment procedures. J Cult Herit. 2008;9:38–53. https://doi.org/10.1016/j.culher.2007.06.004.

    CrossRef  Google Scholar 

  172. Ferreira Pinto AP. Delgado Rodrigues J. Consolidation of carbonate stones: Influence of treatment procedures on the strengthening action of consolidants. J Cult Herit. 2012;13:154–166. https://doi.org/10.1016/j.culher.2011.07.003.

    CrossRef  Google Scholar 

  173. Remzova M, Sasek P, Frankeova D, Slizkova Z, Rathousky J. Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr Build Mater. 2016;112:674–681. https://doi.org/10.1016/j.conbuildmat.2016.03.001.

    CAS  CrossRef  Google Scholar 

  174. Tiano P, Filareto F, Ponticelli S, Ferrari M, Valentini E. Drilling force measurement system, a new standardisable methodology to determine the “superficial hardness” of monument stones: prototype design and validation. Int J Rest Build Monum. 2000;6(2):115–132.

    Google Scholar 

  175. Tiano P, Delgado Rodrigues J, De Witte E, Vergès-Belmin V, Massey S, Snethlage R, Costa D, Cadot-Leroux L, Garrod E, Singer B. The conservation of monuments: A new method to evaluate consolidating treatments. Int J Rest Build Monum. 2000;6(2);133–150.

    Google Scholar 

  176. Delgado Rodrigues J, Ferreira Pinto AP, Rodrigues da Costa D. Tracing of decay profiles and evaluation of stone treatments by means of microdrilling techniques. J Cult Herit. 2002;3:117–125.

    Google Scholar 

  177. Pamplona M, Kocher M, Snethlage R, Aires Barros L. Drilling resistance: overview and outlook. Z. dt. Ges. Geowiss., 2007;158(3):665–676. https://doi.org/10.1127/1860-1804/2007/0158-0665.

    CrossRef  Google Scholar 

  178. Nogueira R, Ferreira Pinto AP, Gomes A, Alexandre Bogas J. Prediction of compressive strength for heterogeneous mortars from Drilling Resistance Data. Int J Architect Herit. 2018;14(3):415–432. https://doi.org/10.1080/15583058.2018.1547800.

    CrossRef  Google Scholar 

  179. MCDUR project. Effects of the weathering on stone materials: assessement of their mechanical durability 2001–2005. https://cordis.europa.eu/project/id/G6RD-CT-2000-00266. Accessed 30 Sept 2020.

  180. Fratini F, Rescic S, Tiano P. A new portable system for determining the state of conservation of monumental stones. Mater Struct. 2006;39:139–147. https://doi.org/10.1617/s11527-005-9013-8.

    CrossRef  Google Scholar 

  181. Bracci S, Fratini F. La diagnostica preventiva In: Sabelli R, editor. L’area archeologica di Fiesole-Conservazione della memoria e innovazioni per la fruizione. Edizioni Polistampa (Firenze-IT) 2014;111–122. ISBN 978-88-596-1385-5.

    Google Scholar 

  182. Niedoba K, Slízková Z, Frankeová D, Nunes CL, Jandejsek I. Modifying the consolidation depth of nanolime on Maastricht limestone. Constr Build Mater. 2017;133:51–56. DOI:https://doi.org/10.1016/j.conbuildmat.2016.11.012.

    CAS  CrossRef  Google Scholar 

  183. Molina E, Rueda-Quero L, Benavente D, Burgos-Cara A, Ruiz-Agudo E, Cultrone G. Gypsum crust as a source of calcium for the consolidation of carbonate stones using a calcium phosphate-based consolidant. Constr Build Mater. 2017;143:298–311. https://doi.org/10.1016/j.conbuildmat.2017.03.155.

    CAS  CrossRef  Google Scholar 

  184. Tiano P. Annex to deliverable 15 – Draft of recommended methodologies for stone durability qualification. In: The European Commission Project ACOUTHERM – (GRD3-2001-60001) Effects of the weathering on stone materials: assessment of their mechanical durability (McDUR), 2005.

    Google Scholar 

  185. Delgado Rodrigues J, Costa D. A new method for data correction in drill resistance tests for the effect of drill bit wear, Int J Rest. 2004;10(3):1–18.

    Google Scholar 

  186. Mimoso JM, Costa D. The DRMS drilling technique with pilot holes. In Proceedings of the International Conference on Heritage, Weathering and Conservation, Madrid, Spain. 2006;651–655. ISBN 0-415-41273-0.

    Google Scholar 

  187. Mimoso JM, Costa D, A new technique for using the DRMS in hard materials. Application to the study of the consolidation action. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008;1171–1178.

    Google Scholar 

  188. Meinhardt J,Snethlage R, Auras., Natural stone monitoring - investigation methods for a reliable evaluation of the effectiveness of conservation measures. Proceeding of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012. http://iscs.icomos.org/stonecon.html. Accessed 2 Oct 2020.

  189. Bläuer C, Franzen C, Vergès-Belmin V. Simple field tests in stone conservation. Proceeding of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012. http://iscs.icomos.org/stonecon.html. Accessed 2 Oct 2020.

  190. ASTM D3359-02: Standard Test Methods for Measuring Adhesion by Tape Test, ASTM International, 10 August, 2002.

    Google Scholar 

  191. Drdácký M, Lesák J, Rescic S, Slížková Z, Tiano P, Valach J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mat Struct. 2012;45:505–520. https://doi.org/10.1617/s11527-011-9778-x.

    CAS  CrossRef  Google Scholar 

  192. Drdácký M, Slížková Z. Enhanced affordable methods for assessing material characteristics and consolidation effects on stone and mortar, J Geophys Eng. 2013;10: 064005. https://doi.org/10.1088/1742-2132/10/6/064005.

    CrossRef  Google Scholar 

  193. Becerra J, Ortiz P, Martín JM, Zaderenko AP. Nanolimes doped with quantum dots for stone consolidation assessment. Constr Build Mater. 2019;199:581–593. https://doi.org/10.1016/j.conbuildmat.2018.12.077.

    CAS  CrossRef  Google Scholar 

  194. De Rosario I, Elhaddad F, Pan A, Benavides R, Rivas T, Mosquera MJ. Effectiveness of a novel consolidant on granite: Laboratory and in situ results. Constr Build Mater. 2015;76:140–149. https://doi.org/10.1016/j.conbuildmat.2014.11.055.

    CrossRef  Google Scholar 

  195. De Rosario I, Rivas T, Buceta G, Feijoo J, Mosquera MJ. Surfactant-synthesized consolidants applied to a granitic medieval necropolis in NW Spain. Laboratory and in situ effectiveness evaluation. Int J Archit Herit. 2017;11(8):1166–1176. doi.org/10.1080/15583058.2017.1354097.

  196. Aydin A, Basu A, The Schmidt hammer in rock material characterization, Eng Geol. 2005;81:1–14.

    Google Scholar 

  197. Christaras B. Non destructive methods for investigation of some mechanical properties of natural stones in the protection of monuments. Bull Int Ass Eng Geol. 1996;54:59–63.

    Google Scholar 

  198. Viles J, Goudi A, Grab S, Lalley J. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Proc Land. 2011;36:320–333. https://doi.org/10.1002/esp.2040.

    CrossRef  Google Scholar 

  199. EN 14579:2004, Natural stone test methods - Determination of sound speed propagation.

    Google Scholar 

  200. Pápay Z, Török Á, Three consolidants and three porous limestones: testing the effectiveness of consolidant on hungarian porous limstones from Sóskút quarry, in terms of physicomechanical properties. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Nicolaus Copernicus University Press, Torun, Poland. 2008;717–724.

    Google Scholar 

  201. NORMAL 22/86 Misura della Velocità di Propagazione del Suono – ICR-CNR Eds.

    Google Scholar 

  202. Murru A, Fort R. Diammonium hydrogen phosphate (DAP) as a consolidant in carbonate stones: Impact of application methods on effectiveness. J Cult Herit. 2020;42:45–55. https://doi.org/10.1016/j.culher.2019.09.003.

    CrossRef  Google Scholar 

  203. Myrin M, Malaga K. A case study on the evaluation of consolidation treatments of Gotland sandstone by use of ultrasound pulse velocity measurements. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo editors. Heritage, Weathering and Conservation. Taylor & Francis Group, London, 2006;749–755.

    Google Scholar 

  204. Sebastian EM, de la Torre MJ, Cazalla O, Cultrone G, Rodriguez-Navarro C. Evaluation of treatments on biocalcarenites with ultrasound, The e-Journal of Non-Destructive Testing. 1999;4(12). http://www.ndt.net/article/v04n12/cultrone/cultrone.htm. Accessed 30. Sept. 2020.

  205. Drdácký M, Eisler M, Krompholz R. In-situ investigation of stone consolidation effects with immersed ultrasonic double-probe. In: Siegesmund S, Middendorf B, editors. Monument future: decay and conservation of stone. Proc. 14th Int. Congress on the Deterioration and Conservation of Stone. Mitteldeutscher Verlag (DE). 2020;233–237.

    Google Scholar 

  206. Sharma G. Digital Color Imaging Handbook C.R.C. Press, U.S.A. 2002.

    Google Scholar 

  207. EN 15803:2009 - Conservation of cultural property - Test methods - Determination of water vapour permeability (δp).

    Google Scholar 

  208. Brown S, Smith L, A transient-flow syringe air permeameter. Geophysics. 2013;78(5):D307–D313. https://doi.org/10.1190/geo2012-0534.1.

    CrossRef  Google Scholar 

  209. Filomena CM, Hornung J, Stollhofen H. Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth. 2014;5(1):1–11. https://doi.org/10.5194/se-5-1-2014.

    CrossRef  Google Scholar 

  210. Mertz J-D, Colas E, Yahmed A, Lenormand R. Assesment of a non-destructive and portable mini permeameter based on a pulse decay flow applied to historical surfaces of porous materials. In: Hughes J, Howind T, editors. Science and Art: A Future for Stone: Proc. of the 13th International Congress on the Deterioration and Conservation of Stone. University of the West of Scotland. Paisley, UK. 2016;415–422.

    Google Scholar 

  211. Torrent R. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct. 1992;25(6):358–365. https://doi.org/10.1007/bf02472595.

    CAS  CrossRef  Google Scholar 

  212. Sena da Fonseca B, Castela AS, Duarte RG, Neves R, Montemor MF Non-destructive and on site method to assess the air-permeability in dimension stones and its relationship with other transport-related properties. Mat Struct. 2015;48:3795–3809. https://doi.org/10.1617/s11527-014-0440-2.

  213. Varas-Muriel MJ, Pérez-Monserrat EM, Vázquez-Calvo C, Fort R. Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr Build Mater. 2015;95:611–622. https://doi.org/10.1016/j.conbuildmat.2015.07.087.

    CrossRef  Google Scholar 

  214. Ma X, Balonis M, Pasco H, Toumazou M, Counts D, Kakoulli I. Evaluation of hydroxyapatite effects for the consolidation of a Hellenistic-Roman rock-cut chamber tomb at Athienou-Malloura in Cyprus. Constr Build Mater. 2017;150:333–344. https://doi.org/10.1016/j.conbuildmat.2017.06.012.

    CAS  CrossRef  Google Scholar 

  215. Possenti E, Colombo C, Conti C, Gigli L, Merlini M, Rikkert Plaisier J, Realini M, Sali D, Gatta GD. Diammonium hydrogenphosphate for the consolidation of building materials. Investigation of newly-formed calcium phosphates. Constr Build Mater. 2019;195:557–563. https://doi.org/10.1016/j.conbuildmat.2018.11.077.

    CAS  CrossRef  Google Scholar 

  216. Jimenez-López C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosú FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere. 2007;78:1929–1936. https://doi.org/10.1016/j.chemosphere.2007.02.044.

    CAS  CrossRef  Google Scholar 

  217. Jimenez-López C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone Int Biodeter Biodegrad. 2008;62352–363. https://doi.org/10.1016/j.ibiod.2008.03.002.

  218. Conti C, Aliatis I, Casati M, Colombo C, Matteini M, Negrotti R, Realini M, Zerbi G. Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. J Cult Herit. 2014;15:336–338. https://doi.org/10.1016/j.culher.2013.08.002.

    CrossRef  Google Scholar 

  219. Conti C, Colombo C, Festa G, Hovind J, Perelli Cippo E, Possenti E, Realini M. Investigation of ammonium oxalate diffusion in carbonatic substrates by neutron tomography. J Cult Herit. 2016;19:463–466. https://doi.org/10.1016/j.culher.2015.12.005.

    CrossRef  Google Scholar 

  220. Possenti E, Colombo C, Bersani D, Bertasa M, Botteon A, Conti C, Lottici PP, Realini M. New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: A multi-analytical approach. Microchem J. 2016;127:79–86. https://doi.org/10.1016/j.microc.2016.02.008.

    CAS  CrossRef  Google Scholar 

  221. Conti C, Striova J, Aliatis I, Colombo C, Greco M, Possenti E, Realini M, Brambilla L, Zerbi G. Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Anal Bioanal Chem. 2013;405:1733–1741. https://doi.org/10.1007/s00216-012-6594-2.

    CAS  CrossRef  Google Scholar 

  222. Normand L, Giovannacci D, Vérges Belmin V, Duchene S, Hénin J. Terahertz time-domain imaging (THZ-TDI): a new non-destructive method for the determination of consolidation depth on stone. In: Siegesmund S, Middendorf B, editors. Monument future: decay and conservation of stone. Proc. 14th Int. Congress on the Deterioration and Conservation of Stone. Mitteldeutscher Verlag (DE). 2020;639–644.

    Google Scholar 

  223. Various authors, Criteria for intervening in stone materials. 2013 review. In Coremans Project: Criteria for Working in Stone Materials; Secretaría General Técnica; Subdirección General de Documentación y Publicaciones: Madrid, Spain. 2013;39–108.

    Google Scholar 

  224. Perez Ema N, Alvarez De Buergo M, Bustamante R. Integrated studies for the evaluation of conservation treatments on building materials from archaeological sites. Application to the case of Merida (Spain). Int J Cons Sci. 2013;4:693–700.

    Google Scholar 

  225. Haake S, Favaro M, Stefan S. The Bologna cocktail - evaluation of consolidation treatments on monuments in France and Italy after 20 years. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;423–430.

    Google Scholar 

  226. Bracci S, Cagnini A, Driussi G, Galeotti M, Morabito ZM, Pinna D, Porcinai S, Sacchi B, Santagostino A. Indagini preliminari all’intervento di restauro. In: Improta MC, editor. Il restauro dei portali di San Petronio a Bologna. Studi e approfondimenti.. Edifir, Firenze (IT). 2016;185–191. ISBN 978-88-7970-744-2.

    Google Scholar 

  227. Bracci S, Galeotti M, Pinna D, Marble statues and panels of San Petronio façade in Bologna, state of conservation after 40 years since restoration. Proc. of the 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York, 2012. http://iscs.icomos.org/stonecon.html. Accessed 02 Oct 2020.

  228. Fassina V, Benchiarin S, Molin G. Laboratory and in situ evaluation of restoration treatments in two important monuments in Padua: “Loggia Cornaro” and “Stele of Minerva”. In: Hughes J, Howind T, editors. Science and Art: A Future for Stone: Proc. of the 13th International Congress on the Deterioration and Conservation of Stone. University of the West of Scotland. Paisley, UK. 2016;1111–1118.

    Google Scholar 

  229. Calia A, Lettieri M, Quarta G, Laurenzi Tabasso M, Mecchi AM. Documentation and assessment of the most important conservation treatments carried out on Lecce stone in the last two decades. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;431–438.

    Google Scholar 

  230. EN 16581:2014, Conservation of cultural heritage - Surface protection for porous inorganic materials - Laboratory test methods for the evaluation of the performance of water repellent products.

    Google Scholar 

  231. Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit. 2007;8:69–72.

    Google Scholar 

  232. Torrisi A, Evaluation of five fluorinated compounds as calcarenite protectives. J Cult Herit. 2008;9:135–145.

    Google Scholar 

  233. Pinna D, Salvadori B, Porcinai S. Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr Build Mater. 2011;25:2723–2732.

    Google Scholar 

  234. Vanmeert F, Mudronja D, Fazinic S, Janssens K, Tibljas D. Semi-quantitative analysis of the formation of a calcium oxalate protective layer for monumental limestone using combined micro-XRF and micro-XRPD. X-Ray Spectrosc. 2013;42:256–161.

    CAS  Google Scholar 

  235. Mudronja D, Vanmeert F, Hellemans K, Fazinic S, Janssens K, Tibljas D, Rogosic M, Jakovljevic S. Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods. Appl Phys A. 2013;111:109–119.

    CAS  Google Scholar 

  236. Calia A, Colangiuli D, Lettieri M, Matera L. A deep knowledge of the behaviour of multi-component products for stone protection by an integrated analysis approach. Prog Org Coat. 2013;76:893–899.

    CAS  Google Scholar 

  237. Facio DS, Mosquera MJ. Simple strategy for producing superhydrophobic nanocomposite coatings in Situ on a building substrate. Appl Mat Interf. 2013;7517–7526.

    Google Scholar 

  238. Licchelli M, Malagodi M, Weththimuni M., Zanchi C, Water-repellent properties of fluoroelastomers on a very porous stone: Effect of the application procedure. Prog Org Coat. 2013;76:495–503.

    CAS  Google Scholar 

  239. Tulliani JM, Serra CL, Sangermano M. A visible and long-wavelength photocured epoxy coating for stone protection. J Cult Herit. 2014;15:250–257.

    Google Scholar 

  240. Munafò P, Goffredo GB, Quagliarini E. TiO2-based nanocoatings for preserving architectural stone surfaces: An overview. Constr Build Mater. 2015;84:201–218.

    Google Scholar 

  241. Kronlund D, Lindén M, Smått JH. A polydimethylsiloxane coating to minimize weathering effects on granite. Constr Build Mater. 2016;124:1051–1058.

    CAS  Google Scholar 

  242. Kronlund D, Lindén M, Smått JH. A sprayable protective coating for marble with water-repellent and anti-graffiti properties. Prog Org Coat. 2016;101:359–366.

    CAS  Google Scholar 

  243. Pedna A, Pinhoa L, Frediani P, Mosquera MJ. Obtaining SiO2–fluorinated PLA bionanocomposites with application as reversible and highly-hydrophobic coatings of buildings. Prog Org Coat. 2016;90:91–100.

    CAS  Google Scholar 

  244. Esposito Corcione C, De Simone N, Santarelli ML, Frigione M. Protective properties and durability characteristics of experimental and commercial organic coatings for the preservation of porous stone. Prog Org Coat. 2016;103:193–203.

    Google Scholar 

  245. Andreotti S, Franzoni E, Fabbri P. Poly(hydroxyalkanoate)s-based hydrophobic coatings for the protection of stone in cultural heritage. Materials. 2018;11:165. DOI: https://doi.org/10.3390/ma11010165.

    CAS  CrossRef  Google Scholar 

  246. Roveri M, Gherardi F, Goidanich S, Gulotta D, Castelvetro V, Fischer R, Winandy L, Weber J, Toniolo L. Self-cleaning and antifouling nanocomposites for stone protection: properties and performances of stone-nanomaterial systems. IOP Conf. Series: Materials Science and Engineering 2018;364:012070.

    Google Scholar 

  247. Sabatini V, Cattò C, Cappelletti G, Cappitelli F, Antenuccia S, Farina H, Ortenzi MA, Camazzola S, Di Silvestro G. Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Prog Org Coat. 2018;114:47–57.

    CAS  Google Scholar 

  248. Gherardi F, Goidanich S, Toniolo L. Improvements in marble protection by means of innovative photocatalytic nanocomposites. Prog Org Coat. 2018;121:13–22.

    CAS  Google Scholar 

  249. Tokarský J, Martinec P, Mamulová Kutláková K, Ovčačíková H, Študentová S, Jirĭ Ščučka J. Photoactive and hydrophobic nano-ZnO/poly(alkyl siloxane) coating for the protection of sandstone. Constr Build Mater. 2019;199:549–559.

    Google Scholar 

  250. Dreyfuss T. Interactions on site between powdering porous limestone, natural salt mixtures and applied ammonium oxalate. Herit Sci. 2019;7:5.

    Google Scholar 

  251. Dreyfuss T, Artificially induced calcium oxalate on limestone in urban environments - New findings. J Cult Herit. 2020;42:56–63.

    Google Scholar 

  252. Sacchi B, Vettori S, Andreotti A, Rampazzi L, Colombini MP, Tiano P. Assessment of water repellent treatments for the stone of the Matera cathedral facade (Italy), Int J Archit Herit. 2020; https://doi.org/10.1080/15583058.2020.1782532.

  253. Rius V. How to use static and dynamic contact angles to characterize surface properties with a small portable device. In: Tiano P, Pardini C, editors. In situ monitoring of monumental surfaces. Edifir-Edizioni Firenze, Florence (IT). 2008;255–260.

    Google Scholar 

  254. Bärbel A. Investigation of crusts with the Karsten testing tube. In: Proc. of 7th International Congress on the Deterioration and Conservation of Stone. Laboratorio Nacional de Engenharia Civil, Lisbon (PT).1992;601–609.

    Google Scholar 

  255. Hendrickx R. Using the Karsten tube to estimate water transport parameters of porous buildings materials. Mat Struct. 2013;46:1309–1320. https://doi.org/10.1617/s11527-012-9975-2.

    CrossRef  Google Scholar 

  256. Kozub P, Karsten tube penetration test - new findings and new evaluation method. In: Siegesmund S, Middendorf B, editors. Monument future: decay and conservation of stone. Proc. 14th Int. Congress on the Deterioration and Conservation of Stone. Mitteldeutscher Verlag (DE). 2020;289–292.

    Google Scholar 

  257. Quadrizius JM, Wendler E, Meinhardt J. Improved evaluation of Karsten water uptake: visualization of the soaking front by absorption of dye solutions. In: Siegesmund S, Middendorf B, editors. Monument future: decay and conservation of stone. Proc. 14th Int. Congress on the Deterioration and Conservation of Stone. Mitteldeutscher Verlag (DE). 2020;381–384.

    Google Scholar 

  258. Rossi-Manaresi R, Rattazzi A, Toniolo L. Long term effectiveness of treatment of sandstone. In: Laenen M, editor. Methods of Evaluating Products for the Conservation of Porous Building Materials in Monuments. ICCROM: Rome. 1995;225–244.

    Google Scholar 

  259. Drdácký M, Hasníková H, Lesák J, Zíma P. Innovated water uptake measurements on historic stone surfaces, in: Proc.of the 12th International Congress on the Deterioration and Conservation of Stone, 2012, Columbia University, New York. http://iscs.icomos.org/stonecon.html. Accessed 02 Oct 2020.

  260. Pamplona M, Melo MJ, Tiano P. Contact-sponge method for in situ evaluation of water repellent and consolidation treatment. In: Tiano P, Pardini C, editors. In situ monitoring of monumental surfaces. Edifir-Edizioni Firenze, Florence (IT). 2008;247–254.

    Google Scholar 

  261. Vandevoorde D, Pamplona M, Schalm O, Vanhellemont Y. Contact sponge method: Performance of a promising tool for measuring the initial water absorption. J Cult Herit. 2009;10: 41–47.

    Google Scholar 

  262. Vandevoorde D, Cnudde V, Dewanckele J, Brabant L, de Bouw M, Meynen V, Verhaeven E. Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone. Proc Chem. 2013;8:317–327.

    CAS  Google Scholar 

  263. Vandevoorde D, Cnudde V, Dewanckele J, Boone M, de Bouw M, Meynen V, Lehmann E, Verhaeven E. Comparison of non-destructive techniques for analysis of the water absorbing behavior of stone. Proc. of the 12th International Congress on the Deterioration and Conservation of Stone, 2012, Columbia University, New York. http://iscs.icomos.org/stonecon.html. Accessed 02 Oct 2020.

  264. Vandevoorde D, De Kock T, Cnudde V. In situ assessment of the stone conservation state by its water absorbing behaviour: a hands-on methodology. In: Hughes J, Howind T, editors. Science and Art: A Future for Stone: Proc. of the 13th International Congress on the Deterioration and Conservation of Stone. University of the West of Scotland. Paisley, UK. 2016;483–490.

    Google Scholar 

  265. Vandevoorde D, Cnudde V, Meynen V, de Bouw M, Janssens K. Influence of environmental conditions on water adsorption measurements performed by non-destructive in situ applicable techniques. In: Boriani M, Gabaglio R, Gulotta D, editors. Proc. of Conference Built Heritage - Monitoring Conservation and Management, Milan - Italy, 18–20 November 2013. Centro per la Conservazione e Valorizzazione dei Beni Culturali, Milano (IT). 2013.

    Google Scholar 

  266. Scrivano S, Gaggero L. Non-invasive analytical technique to address water uptake on stone surfaces: the implemented Contact Sponge Method (i-CSM). J Cult Herit. 2017;28:9–15.

    Google Scholar 

  267. Sharma S, Casanova F, Wache W, Segre A, Blümich B, Analysis of historical porous building materials by the NMR-MOUSE®. Magn Reson Imaging. 2003;21:249–255.

    CAS  Google Scholar 

  268. Alesiani M, Capuani S, Maraviglia B, Giorgi R, Baglioni P. Effects induced in marbles by water-repellent compounds: the NMR contribution. Appl Magn Reson. 2002;23:63–73.

    CAS  Google Scholar 

  269. Poli T, Toniolo L. Determination of the water present in building materials by means of a new portable NMR device. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;651–658.

    Google Scholar 

  270. Tortora M, Chiarini M, Spreti N, Casieri C. 1H-NMR-relaxation and colorimetry for evaluating nanopolymeric dispersions as stone protective coatings. J Cult Herit. 2020;44:204–210.

    Google Scholar 

  271. Cuzman OA, Rescic S, Tiano P. A new portable technique to evaluate the compatibility of protective treatments applied on monumental stones. In: Siegesmund S, Middendorf B, editors. Monument future: decay and conservation of stone. Proc. 14th Int. Congress on the Deterioration and Conservation of Stone. Mitteldeutscher Verlag (DE). 2020; 339–344.

    Google Scholar 

  272. Vanmeert F, Mudronja D, Fazinic S, Janssens K, Tibljasd D. Semi-quantitative analysis of the formation of a calcium oxalate protective layer for monumental limestone using combined micro-XRF and micro-XRPD. X-Ray Spectrom. 2013;42:256–261.

    CAS  Google Scholar 

  273. de Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E. Study of silica nanoparticles – polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit. 2011;2(4):356–363.

    Google Scholar 

  274. Conti C, Colombo C, Dellasega D, Matteini M, Realini M, Zerbi G. Ammonium oxalate treatment: evaluation by μ-Raman mapping of the penetration depth in different plasters. J Cult Herit. 2011;12:372–379.

    Google Scholar 

  275. Mudronja D, Vanmeert F, Hellemans K, Fazinic S, Janssens K, Tibljas D, Rogosic M, Jakovljevic S. Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods. Appl Phys A. 2013;111:109–119.

    CAS  Google Scholar 

  276. Bezur A, Lee L, Loubser M, Trentelman K, Handheld XRF in Cultural Heritage - A practical workbook for conservators. J. Paul Getty Trust. Los Angeles (USA). 2020.

    Google Scholar 

  277. Nakai I, Abe Y. Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl Phys A. 2012;106:279–293.

    CAS  Google Scholar 

  278. Mendoza Cuevas A, Bernardini F, Gianoncelli A, Tuniz C. Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom. 2015;44:105–115.

    CAS  Google Scholar 

  279. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM. Comparative study of mobile Raman instrumentation for art analysis. Anal Chim Acta. 2007;588:108–116.

    CAS  Google Scholar 

  280. Meinhardt-Degen J, Snethlage R. Durability of hydrophobic treatment on sandstone facades - investigations of the necessity and effects of retreatment. In: Kwiatkowski D, Löfvendahl R, editors. Proc. of 10th Int. Congress on deterioration and conservation of stone, ICOMOS Sweden, Stockholm (SE), 2004;347–354.

    Google Scholar 

  281. Varas MJ, Alvarez de Buergo M, Fort R. The influence of past protective treatments on the deterioration of historic stone façades: a case study studies in conservation. 2007;52(2):110–124.

    CAS  Google Scholar 

  282. Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B. Durability of the artificial calcium oxalate protective on two Florentine monuments. J Cult Herit. 2007;8:186–192.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thanks the ISPC-CNR collegues that have shared their photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Sacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bracci, S., Sacchi, B. (2022). In situ Assessment of Conservation Treatments and Monitoring of Their Effectiveness. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_8

Download citation