Skip to main content

Current and Future Trends in Protective Treatments for Stone Heritage

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

This chapter provides a background on stone protection, taking into consideration the performance requirements, working properties, and the criteria for the selection of the most appropriate materials for specific case-studies. The main classes of protective treatments (water repellents, antigraffiti coatings, inorganic treatments, limewashes, salts inhibitors, etc.) are explored, along with information about their properties, performances, and durability once applied to naturally weathered stone surfaces. Recent trends in the development of innovative and nanostructured formulations with antibacterial, depolluting, and antifouling properties for stone protection are also examined, providing recommendations for further studies. The chapter emphasises the crucial role of multidisciplinary teams to understand and solve complex problems and challenges that arise in built heritage protection.

Keyword

  • Protective treatments
  • Natural stone
  • Conservation
  • Nanomaterials
  • Durability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_5
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8

References

  1. Smith BJ, McCabe S, McAllister D, Adamson C, Viles HA, Curran JM. A commentary on climate change, stone decay dynamics and the ‘greening’ of natural stone buildings: new perspectives on ‘deep wetting’. Environ Earth Sci. 2011;63(7):1691–1700. https://doi.org/10.1007/s12665-010-0766-1.

    CrossRef  Google Scholar 

  2. Basu S, Orr SA, Aktas YD. A Geological Perspective on Climate Change and Building Stone Deterioration in London: Implications for Urban Stone-Built Heritage Research and Management. Atmos. 2020;11(8):788.

    CAS  CrossRef  Google Scholar 

  3. Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ. 2009;407(6):2039–2050. https://doi.org/10.1016/j.scitotenv.2008.10.067.

    CAS  CrossRef  Google Scholar 

  4. Waller R. Conservation risk assessment: a strategy for managing resources for preventive conservation. Stud Conserv. 1994;39(Supplement-2):12–16. https://doi.org/10.1179/sic.1994.39.Supplement-2.12.

    CrossRef  Google Scholar 

  5. Corfield M. Preventive conservation for archaeological sites. Stud Conserv. 1996;41(Supplement-1):32–37. doi:https://doi.org/10.1179/sic.1996.41.Supplement-1.32.

    CrossRef  Google Scholar 

  6. EN 16096:2012. Conservation of cultural property – Condition survey and report of built cultural heritage. European Committee for Standardization; 2012.

    Google Scholar 

  7. Charola AE. Water Repellents and Other “Protective” Treatments: A Critical Review. Hydrophobe III – 3rd International Conference on Surface Technology with Water Repellent Agents. Hannover: Aedificatio Publishers; 2001.

    Google Scholar 

  8. Martín-Gil J, Ramos-Sánchez MC, Martín-Gil FJ. Ancient pastes for stone protection against environmental agents. Stud Conserv. 1999;44(1):58–62. https://doi.org/10.1179/sic.1999.44.1.58.

    CrossRef  Google Scholar 

  9. Doehne EF, Price CA. Stone conservation: an overview of current research. Research in conservation. Los Angeles: Getty Conservation Institute; 2010.

    Google Scholar 

  10. Toniolo L, Gherardi F. The protection of marble surfaces: the challenge to develop suitable nanostructured treatments. In: Hosseini M, Karapanagiotis I, editors. Advanced Materials for the Conservation of Stone. Springer International Publishing; 2018. p. 57–78.

    CrossRef  Google Scholar 

  11. Hansen CM. Water transport and condensation in fluoropolymer films. Prog Org Coat. 2001;42(3):167–178. https://doi.org/10.1016/S0300-9440(01)00168-0.

    CAS  CrossRef  Google Scholar 

  12. Ferreira Pinto AP, Delgado Rodrigues J. Assessment of the durability of water repellents by means of exposure tests. In: V F, editor. Proceedings of the 9th international congress on deterioration and conservation of stone, 19–24 June. Venice: Elsevier; 2000. p. 273–285.

    Google Scholar 

  13. Odgers D, Henry A. Practical Building Conservation: Stone. Ashgate; 2012.

    Google Scholar 

  14. Turk J, Mauko Pranjić A, Hursthouse A, Turner R, Hughes JJ. Decision support criteria and the development of a decision support tool for the selection of conservation materials for the built cultural heritage. J Cult Herit. 2019;37:44–53. https://doi.org/10.1016/j.culher.2018.10.001.

    CrossRef  Google Scholar 

  15. Delgado Rodrigues J, Grossi A. Indicators and ratings for the compatibility assessment of conservation actions. J Cult Herit. 2007;8(1):32–43. https://doi.org/10.1016/j.culher.2006.04.007.

    CrossRef  Google Scholar 

  16. Casadio F, Toniolo L. Polymer Treatments for Stone Conservation: Methods for Evaluating Penetration Depth. J Am Inst Conservat. 2004;43(1):3–21. https://doi.org/10.2307/3179848.

    CrossRef  Google Scholar 

  17. Alvarez de Buergo Ballester M, Fort González R. Basic methodology for the assessment and selection of water-repellent treatments applied on carbonatic materials. Prog Org Coat. 2001;43(4):258–66. https://doi.org/10.1016/S0300-9440(01)00204-1.

    CAS  CrossRef  Google Scholar 

  18. Roveri M, Gherardi F, Brambilla L, Castiglioni C, Toniolo L. Stone/Coating Interaction and Durability of Si-Based Photocatalytic Nanocomposites Applied to Porous Lithotypes. Materials (Basel). 2018;11(11). https://doi.org/10.3390/ma11112289.

  19. EN 16581:2014. Conservation of Cultural Heritage — Surface protection for porous inorganic materials — Laboratory test methods for the evaluation of the performance of water repellent products. European Committee for Standardization; 2014.

    Google Scholar 

  20. Praticò Y, Caruso F, Delgado Rodrigues J, Girardet F, Sassoni E, Scherer G. W. et al. Stone consolidation: a critical discussion of theoretical insights and field practice. RILEM Technical Letters. 2020;4(0). https://doi.org/10.21809/rilemtechlett.2019.101.

  21. Gherardi F, Gulotta D, Goidanich S, Colombo A, Toniolo L. On-site monitoring of the performance of innovative treatments for marble conservation in architectural heritage. Herit Sci. 2017;5(1):4. https://doi.org/10.1186/s40494-017-0118-5.

    CAS  CrossRef  Google Scholar 

  22. Siegesmund S, Snethlage R, editors. Stone in Architecture. Properties, Durability. Springer; 2014.

    Google Scholar 

  23. Gulotta D, Toniolo L. Conservation of the Built Heritage: Pilot Site Approach to Design a Sustainable Process. Heritage. 2019;2(1):797–812.

    CrossRef  Google Scholar 

  24. Charola AE. Water-Repellent Treatments for Building Stones: A Practical Overview. APT Bull. 1995;26(2/3):10–17. https://doi.org/10.2307/1504480.

    CrossRef  Google Scholar 

  25. Doherty B, Pamplona M, Selvaggi R, Miliani C, Matteini M, Sgamellotti A, et al. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering. Appl Surf Sci. 2007;253(10):4477–4484. https://doi.org/10.1016/j.apsusc.2006.09.056.

    CAS  CrossRef  Google Scholar 

  26. Karapanagiotis I, Hosseini M. Superhydrophobic Coatings for the Protection of Natural Stone. In: Hosseini M, Karapanagiotis I, editors. Advanced Materials for the Conservation of Stone. Springer International Publishing; 2018. p. 1–25.

    Google Scholar 

  27. Gherardi F, Roveri M, Goidanich S, Toniolo L. Photocatalytic Nanocomposites for the Protection of European Architectural Heritage. Materials. 2018;11(1):65.

    CrossRef  Google Scholar 

  28. Tesser E, Antonelli F, Sperni L, Ganzerla R, Maravelaki N-P. Study of the stability of siloxane stone strengthening agents. Polym Degrad Stab. 2014;110:232–240. https://doi.org/10.1016/j.polymdegradstab.2014.08.022.

    CAS  CrossRef  Google Scholar 

  29. Cappelletti G, Fermo P. 15 – Hydrophobic and superhydrophobic coatings for limestone and marble conservation. In: Montemor MF, editor. Smart Composite Coatings and Membranes. Woodhead Publishing; 2016. p. 421–452.

    CrossRef  Google Scholar 

  30. Lettieri M, Masieri M. Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone. Coatings. 2016;6(4):60.

    CrossRef  Google Scholar 

  31. Wheeler G. Alkoxysilanes and the Consolidation of Stone. Research in Conservation. Los Angeles: Getty Conservation Insitute; 2005.

    Google Scholar 

  32. Pinho L, Elhaddad F, Facio DS, Mosquera MJ. A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci. 2013;275(0):389–96. https://doi.org/10.1016/j.apsusc.2012.10.142.

  33. Kapridaki C, Maravelaki-Kalaitzaki P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat. 2013;76(2–3):400–410. https://doi.org/10.1016/j.porgcoat.2012.10.006.

    CAS  CrossRef  Google Scholar 

  34. Salvadori B, Pinna D, Porcinai S. Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering. Environ Sci Pollut Res. 2014;21(3):1884–1896. https://doi.org/10.1007/s11356-013-2032-z.

    CAS  CrossRef  Google Scholar 

  35. Ferreira Pinto AP, Delgado Rodrigues J. Effectiveness and stability over time of water repellent treatments in carbonate and granitic stones. In: Charola EA, Delgado Rodrigues J, editors. Hydrophobe VII 7th International Conference on Water Repellent Treatment and Protective Surface Technology for Building Materials. Lisbon: LNEC (Laboratório Nacional de Engenharia Civil); 2014. p. 151–160.

    Google Scholar 

  36. Sacchi B, Vettori S, Andreotti A, Rampazzi L, Colombini MP, Tiano P. Assessment of Water Repellent Treatments for the Stone of the Matera Cathedral Facade (Italy). Int J Archit Herit. 2020:1–9. https://doi.org/10.1080/15583058.2020.1782532.

  37. Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit. 2007;8(1):69–72. https://doi.org/10.1016/j.culher.2006.06.007.

    CrossRef  Google Scholar 

  38. Vecchiattini R, Fratini F, Rescic S, Riminesi C, Mauri M, Vicini S. The marly limestone, a difficult material to restore: The case of the San Fruttuoso di Capodimonte Abbey (Genoa, Italy). J Cult Herit. 2018;34:1–12. https://doi.org/10.1016/j.culher.2018.01.019.

    CrossRef  Google Scholar 

  39. C. Moreau, L. Leroux, V. Vergès-Belmin, G. Fronteau, Barbin V. Which factors influence most the durability of water repellent treatments: stone properties, climate or atmospheric pollution? Hydrophobe V 5th International Conference on Water Repellent Treatment of Building Materials: Aedificatio Publishers; 2008. p. 129–142

    Google Scholar 

  40. Orlowsky J, Braun F, Groh M. The Influence of 30 Years Outdoor Weathering on the Durability of Hydrophobic Agents Applied on Obernkirchener Sandstones. Buildings. 2020;10(1):18.

    CrossRef  Google Scholar 

  41. Behre S, Littmann K. Measurement of Humidity in Sandstones Treated with Water Repellent Agents Hydrophobe V 5th International Conference on Water Repellent Treatment of Building Materials: Aedificatio Publishers; 2008. p. 75–84.

    Google Scholar 

  42. Gherardi F, Goidanich S, Toniolo L. Improvements in marble protection by means of innovative photocatalytic nanocomposites. Prog Org Coat. 2018;121:13–22. https://doi.org/10.1016/j.porgcoat.2018.04.010.

    CAS  CrossRef  Google Scholar 

  43. Pargoletti E, Motta L, Comite V, Fermo P, Cappelletti G. The hydrophobicity modulation of glass and marble materials by different Si-based coatings. Prog Org Coat. 2019;136:105260. https://doi.org/10.1016/j.porgcoat.2019.105260.

    CAS  CrossRef  Google Scholar 

  44. Costa D, Delgado Rodrigues J. Testing new water repellent solutions to protect deteriorated granite. In: Charola EA, Delgado Rodrigues J, editors. Hydrophobe VII 7th International Conference on Water Repellent Treatment and Protective Surface Technology for Building Materials. Lisbon: LNEC (Laboratório Nacional de Engenharia Civil); 2014. p. 179–188.

    Google Scholar 

  45. Kronlund D, Lindén M, Smått J-H. A polydimethylsiloxane coating to minimize weathering effects on granite. Constr Build Mater. 2016;124:1051–1058. https://doi.org/10.1016/j.conbuildmat.2016.08.146.

    CAS  CrossRef  Google Scholar 

  46. Roby T. In-situ assessment of surface consolidation and protection treatments of marble monuments in Rome in the 1980s, with particular reference to two treatments with Paraloid B72. In: Riederer J, editor. Eighth International Congress on Deterioration and Conservation of Stone. Berlin: Moller Druck und Verlag; 1996. p. 1015–1028.

    Google Scholar 

  47. Braun F, Orlowsky J, Brüggerhoff S. Analyzing Near-Surface Regions of Hydrophobic and Long-Term Weathered Natural Stones at Microscopic Scale. Heritage. 2020;3(2):457–473.

    CrossRef  Google Scholar 

  48. Becherini F, Pastorelli G, Valotto G, Gambirasi A, Bianchin S, Favaro M. Effects of protective treatments on particle deposition and colour variation in stone surfaces exposed to an urban environment. Prog Org Coat. 2017;112:75–85. https://doi.org/10.1016/j.porgcoat.2017.06.029.

    CAS  CrossRef  Google Scholar 

  49. Charola AE, Rodrigues JD, Anjos MV. An unsatisfactory case of water repellents applied to control biocolonization. Hydrophobe V 5th International Conference on Water Repellent Treatment of Building Materials: Aedificatio Publisher; 2008. p. 117–128.

    Google Scholar 

  50. Gherardi F, Kapridaki C, Roveri M, Gulotta D, Maravelaki PN, Toniolo L. The deterioration of Apuan white marble in contemporary architectural context. J Cult Herit. 2019;35:297–306. https://doi.org/10.1016/j.culher.2018.06.008.

    CrossRef  Google Scholar 

  51. Maravelaki P-N, Toniolo L, Gherardi F, Kapridaki C, Arabatzis I. The Oslo Opera House – Condition Analysis and Proposal for Cleaning, Protection and Maintenance of Exterior Marble. Springer International Publishing; 2019. p. 104–116.

    Google Scholar 

  52. Carretti E, Dei L. Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Prog Org Coat. 2004;49(3):282–289. https://doi.org/10.1016/j.porgcoat.2003.10.011.

    CAS  CrossRef  Google Scholar 

  53. Borgia GC, Camaiti M, Cerri F, Fantazzini P, Piacenti F. Hydrophobic Treatments for Stone Conservation – Influence of the Application Method on Penetration, Distribution and Efficiency. Stud Conserv. 2003;48(4):217–226. https://doi.org/10.1179/sic.2003.48.4.217.

    CAS  CrossRef  Google Scholar 

  54. Chiantore O, Trossarelli L, Lazzari M. Photooxidative degradation of acrylic and methacrylic polymers. Polymer. 2000;41(5):1657–1668. https://doi.org/10.1016/s0032-3861(99)00349-3.

    CAS  CrossRef  Google Scholar 

  55. Chiantore O, Lazzari M. Photo-oxidative stability of paraloid acrylic protective polymers. Polymer. 2001;42(1):17–27.

    CAS  CrossRef  Google Scholar 

  56. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, et al. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: Photo-oxidative weathering. Polym Degrad Stab. 2006;91(12):3083–3096. https://doi.org/10.1016/j.polymdegradstab.2006.08.012.

    CAS  CrossRef  Google Scholar 

  57. Cappitelli F, Nosanchuk JD, Casadevall A, Toniolo L, Brusetti L, Florio S, et al. Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics. Appl Environ Microbiol. 2007;73(1):271–277. https://doi.org/10.1128/aem.02220-06.

    CAS  CrossRef  Google Scholar 

  58. Ciardelli F, Aglietto M, Castelvetro V, Chiantore O, Toniolo L. Fluorinated polymeric materials for the protection of monumental buildings. Macromol Symp. 2000;152(1):211–222. https://doi.org/10.1002/1521-3900(200003)152:1<211::aid-masy211>3.0.co;2-u.

    CAS  CrossRef  Google Scholar 

  59. Toniolo L, Poli T, Castelvetro V, Manariti A, Chiantore O, Lazzari M. Tailoring new fluorinated acrylic copolymers as protective coatings for marble. J Cult Herit. 2002;3(4):309–316. https://doi.org/10.1016/S1296-2074(02)01240-2.

    CrossRef  Google Scholar 

  60. Poli T, Toniolo L, Chiantore O. The protection of different Italian marbles with two partially flourinated acrylic copolymers. Appl Phys A. 2004;79(2):347–351. https://doi.org/10.1007/s00339-004-2530-4.

    CAS  CrossRef  Google Scholar 

  61. Sacchi B, Giannini L, Frediani M, Rosi L, Frediani P. Methyl acrylate polymers as suitable materials for the conservation of stone: performance improvements through atom transfer radical polymerization. J Coat Technol Res. 2013;10(5):649–657. https://doi.org/10.1007/s11998-013-9495-1.

    CAS  CrossRef  Google Scholar 

  62. Licchelli M, Malagodi M, Weththimuni ML, Zanchi C. Water-repellent properties of fluoroelastomers on a very porous stone: Effect of the application procedure. Prog Org Coat. 2013;76(2):495–503. https://doi.org/10.1016/j.porgcoat.2012.11.005.

    CAS  CrossRef  Google Scholar 

  63. Colangiuli D, Lettieri M, Masieri M, Calia A. Field study in an urban environment of simultaneous self-cleaning and hydrophobic nanosized TiO2-based coatings on stone for the protection of building surface. Sci Total Environ. 2019;650:2919–2930. https://doi.org/10.1016/j.scitotenv.2018.10.044.

    CAS  CrossRef  Google Scholar 

  64. García O, Rz-Maribona I, Gardei A, Riedl M, Vanhellemont Y, Santarelli ML, et al. Comparative study of the variation of the hydric properties and aspect of natural stone and brick after the application of 4 types of anti-graffiti. Materiales de Construcción. 2010;60(297):69–82. https://doi.org/10.3989/mc.2010.45507.

    CAS  CrossRef  Google Scholar 

  65. García O, Malaga K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J Cult Herit. 2012;13. https://doi.org/10.1016/j.culher.2011.07.004.

  66. Carmona-Quiroga PM, Martínez-Ramírez S, Sánchez-Cortés S, Oujja M, Castillejo M, Blanco-Varela MT. Effectiveness of antigraffiti treatments in connection with penetration depth determined by different techniques. J Cult Herit. 2010;11(3):297–303. https://doi.org/10.1016/j.culher.2009.09.006.

    CrossRef  Google Scholar 

  67. Lettieri M, Masieri M. Surface characterization and effectiveness evaluation of anti-graffiti coatings on highly porous stone materials. Appl Surf Sci. 2014;288:466–477. https://doi.org/10.1016/j.apsusc.2013.10.056.

    CAS  CrossRef  Google Scholar 

  68. Ricci C, Gambino F, Nervo M, Piccirillo A, Scarcella A, De Stefanis A, et al. Anti-Graffiti Coatings on Stones for Historical Buildings in Turin (NW Italy). Coatings. 2020;10(6):582.

    CAS  CrossRef  Google Scholar 

  69. Carmona-Quiroga PM, Martínez-Ramírez S, Viles HA. Efficiency and durability of a self-cleaning coating on concrete and stones under both natural and artificial ageing trials. Appl Surf Sci. 2018;433:312–320. https://doi.org/10.1016/j.apsusc.2017.10.052.

    CAS  CrossRef  Google Scholar 

  70. Rabea AM, Mohseni M, Mirabedini SM, Tabatabaei MH. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Appl Surf Sci. 2012;258(10):4391–4396. https://doi.org/10.1016/j.apsusc.2011.12.123.

    CAS  CrossRef  Google Scholar 

  71. Hansen E, Doehne E, Fidler J, Larson J, Martin B, Matteini M, et al. A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Reviews in Conservation. 2003;4(Supplement-1):13–25.

    CAS  Google Scholar 

  72. King HE, Mattner DC, Plümper O, Geisler T, Putnis A. Forming Cohesive Calcium Oxalate Layers on Marble Surfaces for Stone Conservation. Cryst Growth Des. 2014;14(8):3910–3917. https://doi.org/10.1021/cg500495a.

    CAS  CrossRef  Google Scholar 

  73. Burgos-Cara A, Ruiz-Agudo E, Rodriguez-Navarro C. Effectiveness of oxalic acid treatments for the protection of marble surfaces. Mater Des. 2017;115:82–92. https://doi.org/10.1016/j.matdes.2016.11.037.

    CAS  CrossRef  Google Scholar 

  74. Mudronja D, Vanmeert F, Hellemans K, Fazinic S, Janssens K, Tibljas D, et al. Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods. Appl Phys A. 2013;111(1):109–119. https://doi.org/10.1007/s00339-012-7365-9.

    CAS  CrossRef  Google Scholar 

  75. Dreyfuss T, Cassar J. Ammonium Oxalate Treatment Application in the Presence of Soluble Salts: Laboratory Results on Soft Limestone. In: Toniolo L, Boriani M, Guidi G, editors. Built Heritage: Monitoring Conservation Management. Springer International Publishing; 2015. p. 403–412.

    Google Scholar 

  76. Dreyfuss T. Interactions on site between powdering porous limestone, natural salt mixtures and applied ammonium oxalate. Herit Sci. 2019;7(1):5. https://doi.org/10.1186/s40494-019-0247-0.

    CrossRef  Google Scholar 

  77. Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B. Durability of the artificial calcium oxalate protective on two Florentine monuments. J Cult Herit. 2007;8(2):186–192. https://doi.org/10.1016/j.culher.2006.12.002.

    CrossRef  Google Scholar 

  78. Sassoni E. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review. Materials. 2018;11(4):557.

    CrossRef  Google Scholar 

  79. Graziani G, Sassoni E, Scherer GW, Franzoni E. Resistance to simulated rain of hydroxyapatite- and calcium oxalate-based coatings for protection of marble against corrosion. Corros Sci. 2017;127:168–174. https://doi.org/10.1016/j.corsci.2017.08.020.

    CAS  CrossRef  Google Scholar 

  80. Michette M, Viles H, Vlachou-Mogire C, Angus I. Assessing the Long-term Success of Reigate Stone Conservation at Hampton Court Palace and the Tower of London. Stud Conserv. 2020:1–8. https://doi.org/10.1080/00393630.2020.1752427.

  81. Charola AE, Centeno SA, Normandin K. The New York Public Library: Protective Treatment for Sugaring Marble. J Archit Conserv. 2010;16(2):29–44. https://doi.org/10.1080/13556207.2010.10785068.

    CrossRef  Google Scholar 

  82. Bracciale MP, Sammut S, Cassar J, Santarelli ML, Marrocchi A. Molecular Crystallization Inhibitors for Salt Damage Control in Porous Materials: An Overview. Molecules. 2020;25(8). https://doi.org/10.3390/molecules25081873.

  83. Granneman SJC, Lubelli B, van Hees RPJ. Mitigating salt damage in building materials by the use of crystallization modifiers – a review and outlook. J Cult Herit. 2019;40:183–194. https://doi.org/10.1016/j.culher.2019.05.004.

    CrossRef  Google Scholar 

  84. Selwitz C, Doehne E. The evaluation of crystallization modifiers for controlling salt damage to limestone. J Cult Herit. 2002;3(3):205–216. https://doi.org/10.1016/S1296-2074(02)01182-2.

    CrossRef  Google Scholar 

  85. Cassar J, Marrocchi A, Santarelli ML, Muscat M. Controlling crystallization damage by the use of salt inhibitors on Malta’s limestone. Materiales de Construcción. 2008;58(289–290):281–293. https://doi.org/10.3989/mc.2008.v58.i289-290.83.

    CAS  CrossRef  Google Scholar 

  86. Ruiz-Agudo E, Lubelli B, Sawdy A, van Hees R, Price C, Rodriguez-Navarro C. An integrated methodology for salt damage assessment and remediation: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci. 2011;63(7):1475–1486. https://doi.org/10.1007/s12665-010-0661-9.

    CAS  CrossRef  Google Scholar 

  87. Baglioni P, Carretti E, Chelazzi D. Nanomaterials in art conservation. Nat Nano. 2015;10(4):287–290. https://doi.org/10.1038/nnano.2015.38.

    CAS  CrossRef  Google Scholar 

  88. Hosseini M, Karapanagiotis I. Advanced Materials for the Conservation of Stone. Springer International Publishing; 2018.

    CrossRef  Google Scholar 

  89. Manoudis P, Papadopoulou S, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments. J Phys Conf Ser. 2007;61(1):1361.

    CAS  CrossRef  Google Scholar 

  90. Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeová B, Panayiotou C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl Phys A. 2009;97(2):351–360. https://doi.org/10.1007/s00339-009-5233-z.

    CAS  CrossRef  Google Scholar 

  91. Manoudis PN, Tsakalof A, Karapanagiotis I, Zuburtikudis I, Panayiotou C. Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Technol. 2009;203(10–11):1322–1328. https://doi.org/10.1016/j.surfcoat.2008.10.041.

    CAS  CrossRef  Google Scholar 

  92. Karapanagiotis I, Manoudis PN, Savva A, Panayiotou C. Superhydrophobic polymer-particle composite films produced using various particle sizes. Surf Interface Anal. 2012;44(7):870–875. https://doi.org/10.1002/sia.4930.

    CAS  CrossRef  Google Scholar 

  93. Facio DS, Mosquera MJ. Simple Strategy for Producing Superhydrophobic Nanocomposite Coatings In Situ on a Building Substrate. ACS Appl Mater Inter. 2013;5(15):7517–7526. https://doi.org/10.1021/am401826g.

    CAS  CrossRef  Google Scholar 

  94. Bellissima F, Bonini M, Giorgi R, Baglioni P, Barresi G, Mastromei G, et al. Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut Res. 2014;21(23):13278–13286. https://doi.org/10.1007/s11356-013-2215-7.

    CAS  CrossRef  Google Scholar 

  95. Becerra J, Mateo M, Ortiz P, Nicolás G, Zaderenko AP. Evaluation of the applicability of nano-biocide treatments on limestones used in cultural heritage. J Cult Herit. 2019;38:126–135. https://doi.org/10.1016/j.culher.2019.02.010.

    CrossRef  Google Scholar 

  96. Ditaranto N, Loperfido S, van der Werf I, Mangone A, Cioffi N, Sabbatini L. Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment. Anal Bioanal Chem. 2011;399(1):473–481. https://doi.org/10.1007/s00216-010-4301-8.

    CAS  CrossRef  Google Scholar 

  97. Gómez-Ortíz N, De la Rosa-García S, González-Gómez W, Soria-Castro M, Quintana P, Oskam G, et al. Antifungal Coatings Based on Ca(OH)2 Mixed with ZnO/TiO2 Nanomaterials for Protection of Limestone Monuments. ACS Appl Mater Inter. 2013;5(5):1556–1565. https://doi.org/10.1021/am302783h.

    CAS  CrossRef  Google Scholar 

  98. van der Werf I, Ditaranto N, Picca R, Sportelli M, Sabbatini L. Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Herit Sci. 2015;3(1):1–9. https://doi.org/10.1186/s40494-015-0060-3.

    CAS  CrossRef  Google Scholar 

  99. Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater. 2012;37(0):51–57. https://doi.org/10.1016/j.conbuildmat.2012.07.006.

  100. Gherardi F, Colombo A, D’Arienzo M, Credico B, Goidanich S, Morazzoni F, et al. Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchem J. 2016;126. https://doi.org/10.1016/j.microc.2015.11.043.

  101. Gherardi F, Goidanich S, Dal Santo V, Toniolo L. Layered Nano-TiO2 Based Treatments for the Maintenance of Natural Stones in Historical Architecture. Angew Chem Int Ed. 2018;57(25):7360–7363. https://doi.org/10.1002/anie.201712752.

    CAS  CrossRef  Google Scholar 

  102. Cappelletti G, Fermo P, Camiloni M. Smart hybrid coatings for natural stones conservation. Prog Org Coat. 2015;78:511–516. https://doi.org/10.1016/j.porgcoat.2014.05.029.

    CAS  CrossRef  Google Scholar 

  103. Colangiuli D, Calia A, Bianco N. Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Constr Build Mater. 2015;93:189–196. https://doi.org/10.1016/j.conbuildmat.2015.05.100.

    CrossRef  Google Scholar 

  104. La Russa MF, Rovella N, Alvarez de Buergo M, Belfiore CM, Pezzino A, Crisci GM, et al. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog Org Coat. 2016;91:1–8. https://doi.org/10.1016/j.porgcoat.2015.11.011.

    CAS  CrossRef  Google Scholar 

  105. Pinho L, Mosquera MJ. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C. 2011;115. https://doi.org/10.1021/jp2074623.

  106. Kapridaki C, Pinho L, Mosquera MJ, Maravelaki-Kalaitzaki P. Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Applied Catalysis B: Environmental. 2014;156:416–427. https://doi.org/10.1016/j.apcatb.2014.03.042.

    CAS  CrossRef  Google Scholar 

  107. Sassoni E, D’Amen E, Roveri N, Scherer GW, Franzoni E. Durable Self-Cleaning Coatings for Architectural Surfaces by Incorporation of TiO2 Nano-Particles into Hydroxyapatite Films. Materials (Basel, Switzerland). 2018;11(2):177. https://doi.org/10.3390/ma11020177.

    CAS  CrossRef  Google Scholar 

  108. Munafò P, Quagliarini E, Goffredo GB, Bondioli F, Licciulli A. Durability of nano-engineered TiO2 self-cleaning treatments on limestone. Constr Build Mater. 2014;65(0):218–231. https://doi.org/10.1016/j.conbuildmat.2014.04.112.

    CrossRef  Google Scholar 

  109. Calia A, Lettieri M, Masieri M. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Build Environ. 2016;110:1–10. https://doi.org/10.1016/j.buildenv.2016.09.030.

    CrossRef  Google Scholar 

  110. Roveri M, Goidanich S, Toniolo L. Artificial Ageing of Photocatalytic Nanocomposites for the Protection of Natural Stones. Coatings. 2020;10(8):729.

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

Adriana Eidsvik (Statsbygg, Oslo, Norway), Anton Sutter (Opera della Primaziale Pisana, Pisa, Italy), and Franz Zehetner (St. Stephen’s Cathedral, Vienna, Austria) are acknowledged and thanked for providing pictures for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gherardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gherardi, F. (2022). Current and Future Trends in Protective Treatments for Stone Heritage. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_5

Download citation