Skip to main content

Stone Consolidation. Between Science and Practice

  • 220 Accesses

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

This chapter deals with basic considerations about stone consolidation and aims to advance thoughts and clues to help professionals bridge the gap between science and practice. Scientific literature and personal experience serve to support and interpret the complex and intricate difficulties raised by practical consolidation needs. The reasons for these difficulties stem from the often-complex patterns of deterioration, the high potential risks of obtaining a very high or very low consolidation action, the uncertainty of medium- and long-term behaviour, and the lack of adequate guidelines for selecting a product and configuring a treatment consolidation solution for the intended objective. The purpose of this chapter is to help professionals to adapt existing knowledge on stone consolidation issues to each specific case and help them to make decisions, keeping in mind that there is no universally applicable product or treatment and that universal recipes should be clearly discarded. It is assumed here that the user works with products available on the market and, therefore, this chapter is not sufficiently detailed and is not intended to serve as a guide for testing or certifying new products or treatment techniques to be introduced to the market.

Keywords

  • Stone consolidation
  • Consolidants
  • Consolidation treatment
  • Effectiveness
  • Compatibility

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_4
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7

Notes

  1. 1.

    Paraloid B72 is a methyl acrylate ethyl methacrylate, from Rohm & Haas.

  2. 2.

    DRI-FILM is a water repellent, methyl trimethoxysilane, from General Electric.

  3. 3.

    Originally a mixture of acetone:1,1,1 trichloroethane (1:1). Another common formula is a mixture of toluene:xylene:acetone (0.7,0.1:0.2).

References

  1. Praticò Y, Caruso F, Delgado Rodrigues J, Girardet F, Sassoni E, Scherer GW, et al. Stone consolidation: a critical discussion of theoretical insights and field practice. RILEM Tech Lett. 2020;4:145-153.

    Google Scholar 

  2. Clifton JR. Stone Consolidating Materials: A Status Report. Washington D.C.; 1980.

    Google Scholar 

  3. Doehne E, Price CA. Stone Conservation: An Overview of Current Research [Internet]. 2nd ed. Los Angeles: Getty Conservation Institute; 2010. xi, 158 p. ill. 28 cm. (Research in Conservation). Available from: http://hdl.handle.net/10020/gci_pubs/stone_conservation

  4. Tabasso ML, Simon S. Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials. Stud Conserv [Internet]. 2006;51(sup1):67–82. Available from: http://www.tandfonline.com/doi/full/10.1179/sic.2006.51.Supplement-1.67

  5. Amoroso GG, Fassina V. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, Consolidation, and Protection [Internet]. Amsterdam: Elsevier; 1983. xix, 453 p. ill. 25 cm. (Materials Science Monographs 11; vol. 11). Available from: http://www.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=437337%5Cnhttp://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=1326%5Cnhttp://www.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=437337%5Cnhttp:

    Google Scholar 

  6. Lazzarini L, Laurenzi Tabasso M. Il restauro della pietra. Padova: CEDAM; 1986. xiv, 320 p., [4] p. of plates ill. (some col.) 25.

    Google Scholar 

  7. Price CA. The evaluation of stone preservatives. In: Conservation of Historic Buildings and Monuments. Washington, D.C.: National Academy Press; 1982. p. 329–40.

    Google Scholar 

  8. Delgado Rodrigues J, Grossi A. Indicators and ratings for the compatibility assessment of conservation interventions. J Cult Herit. 2007;8:32–43.

    Google Scholar 

  9. Siegesmund S, Snethlage R. Stone in architecture: Properties, durability. Stone in Architecture: Properties, Durability. 2011. 1–552 p.

    Google Scholar 

  10. Horie C V. Materials for Conservation: Organic Consolidants, Adhesives and Coatings. Amsterdam: Butterworth-Heinemann; 2010. 504 p.

    Google Scholar 

  11. Selwitz C. Epoxy Resins in Stone Conservation [Internet]. Marina del Rey, CA: Getty Conservation Institute; 1992. 112 p. ill. 28 cm. (Research in Conservation 7). Available from: http://hdl.handle.net/10020/gci_pubs/epoxy_resing_in_stone

  12. Wheeler G. Alkoxysilanes and the Consolidation of Stone [Internet]. Los Angeles: Getty Publications; 2005. xiv, 196 pages illustrations 28 cm. (Research in Conservation). Available from: http://hdl.handle.net/10020/gci_pubs/consolidation_of_stone

  13. Lewin SZ. Recent experience with chemical techniques of stone preservation. In: The Treatment of Stone - Proceedings of the Meeting of the Joint Committee for the Conservation of Stone. Bologna, Italy; 1971. p. 139–44.

    Google Scholar 

  14. Lewin SZ, Wheeler G. Alkoxysilane chemistry and stone conservation. In: Félix G, editor. Vth Int Cong on Deterioration and Conservation of Stone. Lausanne, Switzerland: Presses Polytechniques Romandes, Lausanne; 1985. p. 831–44.

    Google Scholar 

  15. Wendler E. New materials and approaches for the conservation of stone. In: Saving our architectural heritage Dahlem Workshop held in Berlin 1996. Berlin, Germany: John Wiley & Sons; 1997. p. 181–96.

    Google Scholar 

  16. Yang M, Scherer GW, Wheeler G, Housley RA. Compatible Consolidants. In: Compatible Materials for the Protection of European Cultural Heritage- PACT 56. 1998. p. 201–8.

    Google Scholar 

  17. Mosquera MJ, Desiree´ M de los S, Montes A, Valdez-Castro L. New Nanomaterials for Consolidating Stone. Langmuir. 2008;(24):2772–8.

    CAS  Google Scholar 

  18. Charola AE, Wheeler G, Freund GG. The influence of relative humidity in the polymerization of methyl trimethoxy silane. In: IIC Congress Adhesives and Consolidants. Paris, France; 1984. p. 177–81.

    Google Scholar 

  19. Wheeler G, Fleming SA, Ebersole S. Comparative strengthening effect of several consolidants on Wallace sandstone and Indiana limestone. In: Delgado Rodrigues J, Henriques F, Jeremias FT, editors. 7th Int Cong on Deterioration and Conservation of Stone. Lisbon, Portugal: National Laboratory of Civil Engineering; 1992. p. 1033–41.

    Google Scholar 

  20. Danehey C, Wheeler G, Su S-CH. The influence of quartz and calcite on the polymerization of methyltrimethoxysilane. In: Delgado Rodrigues J, Henriques FMA, Jeremias FT, editors. 7th International Congress on Deterioration and Conservation of Stone. Lisbon, Portugal: National Laboratory of Civil Engineering; 1992.

    Google Scholar 

  21. Goins ES. Alkoxysilane stone consolidants: The effect of the stone substrate on the polymerization process. University College London; 1995.

    Google Scholar 

  22. Goins ES, Wheeler G, Griffiths D, Price CA. The effect of sandstone, limestone, marble and sodium chloride on the polymerization of MTMOS solutions. In: 8th Int Cong on Deterioration and Conservation of Stone. Berlin, Germany; 1996.

    Google Scholar 

  23. Hempel K, Moncrieff A. Summary of work on marble conservation at the Victoria and Albert Museum Conservation Department up to August 1971. In: Rossi-Manaresi R, Torraca G, editors. The Treatment of Stone. Bologna, Italy: Centro per la Conservazione delle Sculture all’Aperto; 1972. p. 165–81.

    Google Scholar 

  24. Larson J. A museum approach to the techniques of stone conservation. In: Gauri KL, Gwinn JA, editors. Fourth international congress on the deterioration and preservation of stone objects. Louisville (Ky.): University of Louisville; 1982. p. 219–37.

    Google Scholar 

  25. De Witte E, Charola AE, Sherryl RP. Preliminary tests on commercial stone consolidants. In: Félix G, editor. Vth international congress on deterioration and conservation of stone. Lausanne: Presses polytechniques romandes; 1985. p. 709–18.

    Google Scholar 

  26. Tabasso ML, Santamaria U. Consolidant and protective effects of different products on Lecce limestone. In: Félix G, editor. Vth International Congress on Deterioration and Conservation of Stone. Lausanne,Switzerland; 1985. p. 697–707.

    Google Scholar 

  27. Boos M, Grobe J, Hilbert G, Muller-Rochholz J. Modified elastic silicic-acid ester applied on natural stone and tests of their efficiency. In: 8th Cong on Deterioration and Conservation of Stone. Berlin, Germany; 1988. p. 1179–85.

    Google Scholar 

  28. Steinhäußer U, Wendler E. Conservation of limestone by surfactants and modified ethylsilicate. In: 10th International Congress on Deterioration and Conservation of Stone. Stockholm; 2004.

    Google Scholar 

  29. Weiss NR, Slavid I, Wheeler G. Development and assessment of a conversion treatment for calcareous stone. In: 9th Int Cong On Deterioration and Conservation of Stone. Venice, Italy; 2000. p. 533–40.

    Google Scholar 

  30. Sena da Fonseca B, Ferreira Pinto AP, Piçarra S, Montemor MF. The potential action of single functionalization treatments and combined treatments for the consolidation of carbonate stones. Constr Build Mater. 2018;163.

    Google Scholar 

  31. Angela Calia, Maurizio Masieri, Giovanni Baldi CM. The Evaluation of Nanosilica Performance for Consolidation Treatment of an Highly Porous Calcarenite. In: 12 th International Congress on the Deterioration and Conservation of Stone. 2012.

    Google Scholar 

  32. Zornoza-Indart A, Lopez-Arce P. Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation. J Cult Herit. 2016;18:258–270.

    Google Scholar 

  33. VV.AA. Advanced materials for the conservation of stone. Hosseini M, Karapanagiotis I, editors. Advanced Materials for the Conservation of Stone. 2018.

    Google Scholar 

  34. Maravelaki N, Verganelaki A, Kilikoglou V, Karatasios I. Synthesis and characterization of a calcium oxalate-silica nanocomposite for stone conservation. In: Engineering Geology for Society and Territory - Volume 8: Preservation of Cultural Heritage. 2015.

    Google Scholar 

  35. Maravelaki P, Verganelaki A. A hybrid consolidant of nano-hydroxyapatite and silica inspired from patinas for stone conservation. In: Advanced Materials for the Conservation of Stone. 2018.

    Google Scholar 

  36. Gauri KL. Efficiency of epoxy resins as stone preservatives. Stud Conserv. 1974;19:100-101.

    CAS  Google Scholar 

  37. Domaslowski W, Strzelczyk A. Evaluation of applicability of epoxy resins to conservation of stone historic monuments. Stud Conserv [Internet]. 1986;31(sup1):126–32. Available from: http://www.tandfonline.com/doi/full/10.1179/sic.1986.31.Supplement-1.126

  38. Cavalletti R, Lazzarini L, Marchesini L, Marinelli G. A new type of epoxy resin for the structural consolidation of badly decayed stones. In: Felix G, editor. Vth International Congress on Deterioration and Conservation of Stone. Lausanne: Presses polytechniques romandes; 1985. p. 769–78.

    Google Scholar 

  39. Lazzarini L. The deterioration and treatment of granitic columns. In: Stone material in monuments: diagnosis and conservation CUM School, Second Course. Crete, Greece; 1993. p. 160–8.

    Google Scholar 

  40. Domaslowski W, Kesy-Lewandowska M. La consolidation en structure des gres a l’aide de resines thermoplastiques. In: Félix G, editor. Vth Int Cong on Deterioration and Conservation of Stone. Lausanne: Presses Polytechniques Romandes, Lausanne; 1985. p. 727–38.

    Google Scholar 

  41. Vassallo JC, Lewin SZ. Investigation of polymer impregnation of stone. I. In situ polymerization of methyl methacrylate. In: Rossi-Manaresi R (Eds. ., editor. The Conservation of Stone II. Bologna, Italy: Centro per la Conservazione delle Sculture all’Aperto; 1981. p. 587–603.

    Google Scholar 

  42. Lewin SZ, Papadimitriou AD. Investigation of polymer impregnation of stone. II. Solvent-transport of pre-polymerized methyl methacrylate. In: Rossi-Manaresi R, editor. The Conservation of Stone II. Bologna, Italy: Centro per la Conservazione delle Sculture all’Aperto; 1981. p. 605–23.

    Google Scholar 

  43. Accardo G, Cassano R, Rossi-Doria P, Sammuri P, Laurenzi Tabasso M. Screening od products and methods for the consolidation of marble. In: Rossi-Manaresi R, editor. The Conservation of Stone II. Bologna, Italy: Centro per la Conservazione delle Sculture all’Aperto; 1981. p. 721–35.

    Google Scholar 

  44. Rossi-Manaresi R. Effectiveness of conservation treatments for the sandstone of monuments in Bologna. In: Rossi-Manaresi R, editor. The Conservation of Stone II. Bologna: Centro per la Conservazione delle Sculture all’Aperto; 1981. p. 665–88.

    Google Scholar 

  45. Rossi Manaresi R. Scientific and technical research. In: Centro per la Conservazione delle sculture all’Aperto, editor. Jacopo della Quercia e la facciata di San Petronio, a Bologna. Bologna, Italy: Edizioni Alfa, Bologna; 1981. p. 225–78.

    Google Scholar 

  46. Hempel K, Hempel G. A technical report on the condition of the Porta della Carta and its restoration. In: Romano S, Clarke A, Rylands P, editors. The Restoration of the Porta della Carta, Venice in Peril Fund. Venice, Italy: Armenian Printing Press; 1980. p. 37–73.

    Google Scholar 

  47. Ashurst J. The cleaning and treatment of limestone by the lime method. In: Ashurst J ohn, Dimes F, editors. The Conservation of Building and Decorative Stone, Volume 2. London: Butterworth-Heinemann,; 1990. p. 169–176.

    Google Scholar 

  48. Brajer I, Kalsbeek N. Limewater absorption and calcite crystal formation on a limewater-impregnated secco wall painting. Stud Conserv. 1999;44:145–56.

    CAS  Google Scholar 

  49. Giorgi R, Dei L, Baglioni P. A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud Conserv. 2000;45:154–61.

    CAS  Google Scholar 

  50. Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P. Colloidal particles of Ca(OH)2: Properties and applications to restoration of frescoes. Langmuir. 2001;17:4251–5.

    CAS  Google Scholar 

  51. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci. 2013;42–9.

    Google Scholar 

  52. Otero J, Charola AE, Grissom CA, Starinieri V. An Overview of Nanolime As a Consolidation Method. Ge-Conservacion. 2017;

    Google Scholar 

  53. Borsoi G. Nanostructured lime-based materials for the conservation of calcareous substrates. A+BE Architecture and the Built Environment. Delft University of Technology; 2017.

    Google Scholar 

  54. Ferroni E, Dini D. Chemical-structural conservation of sulphatized marbles. In: Rossi-Manaresi R, editor. The Conservation of Stone II. Bologna, Italy: Centro per la conservazione delle sculture all’aperto; 1981. p. 559–66.

    Google Scholar 

  55. Matteini M. Inorganic treatments for the consolidation and protection of stone artefacts and mural paintings. Conserv Sci Cult Herit [Internet]. 2008;8:13–27. Available from: http://conservation-science.cib.unibo.it/article/download/1393/766

    Google Scholar 

  56. Lewin SZ, Baer NS. Rationale of the barium hydroxide-urea treatment ofdecayed stone. Stud Conserv. 1974;19(1):24–35.

    CAS  Google Scholar 

  57. Delgado Rodrigues J, Ferreira Pinto AP. Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones. J Cult Herit [Internet]. 2016;19:467–76. Available from: https://doi.org/10.1016/j.culher.2015.10.002

    Google Scholar 

  58. Matteini M, Rescic S, Fratini F, Botticelli G. Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: Preliminary research. Int J Archit Herit. 2011;5(6):717–36.

    Google Scholar 

  59. Sassoni E, Naidu S, Scherer GW. The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J Cult Herit. 2011;

    Google Scholar 

  60. Adolphe J., Loubière JF, Paradas J, Soleilhavoup F. Procédé de traitement biologique d’une surface artificielle. European patent 90400G97.0 1990, European patent 90400G97.0 1990; 1990.

    Google Scholar 

  61. Le Métayer-Levrel G, Castanier S, Orial G, Loubière JF, Perthuisot JP. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol. 1999;

    Google Scholar 

  62. Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun K Ben, Gonzalez-Muñoz MT. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol. 2003;

    Google Scholar 

  63. Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez Navarro A, Gonzalez-Muñoz MT, Rodriguez Gallego M. Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta. 2007;71(5):1197–213.

    CAS  Google Scholar 

  64. Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo Rosúa FJ, Rodriguez Gallego M, Gonzalez-Muñoz MT. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere. 2007;68(10):1929–36.

    CAS  Google Scholar 

  65. Jroundi F, Bedmar EJ, Rodriguez-Navarro C, Gonzalez-Muñoz MT. Consolidation of ornamental stone by microbial carbonatogenesis. Glob Stone Congr 2010. 2010;1–5.

    Google Scholar 

  66. Delgado Rodrigues J, Ferreira Pinto AP. Stone consolidation by biomineralisation. Contribution for a new conceptual and practical approach to consolidate soft decayed limestones. J Cult Herit. 2019;39:82–92.

    Google Scholar 

  67. Ferreira Pinto AP, Delgado Rodrigues J. Stone consolidation: The role of treatment procedures. J Cult Herit. 2008;9(1):38–53.

    Google Scholar 

  68. Franzoni E, Sassoni E, Graziani G. Brushing, poultice or immersion? The role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone. J Cult Herit. 2015;16(2).

    Google Scholar 

  69. Murru A, Fort R. Diammonium hydrogen phosphate (DAP) as a consolidant in carbonate stones: Impact of application methods on effectiveness. J Cult Herit. 2020;

    Google Scholar 

  70. Franzoni E, Graziani G, Sassoni E, Bacilieri G, Griffa M, Lura P. Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Mater Struct. 2014;

    Google Scholar 

  71. Cavaletti R, Marchesini L, Strazzabosco G. Tecnologie di consolidamento e di restauro figurativo di sculture in pietra tenera dei colli Berici. In: Badan B, editor. 3rd Int Cong on the Deterioration and Preservation of Stones. Venice, Italy: Università degli Studi di Padova; 1979. p. 453–60.

    Google Scholar 

  72. Wihr R. The preservation of damaged stones by the so-called acrylic-total-impregnation process. In: B. Badan, editor. 3rd Int Cong on the Deterioration and Preservation of Stones. Venice, Italy: Università degli Studi di Padova; 1979. p. 389–94.

    Google Scholar 

  73. Hempel K. An Improved Method for the Vacuum Impregnation of Stone. Stud Conserv. 1976;21:40–3.

    Google Scholar 

  74. Milchin M. Ethyl-silicate consolidation for porous limestone coated with oil paint. A comparison of application methods. In: 13th Int Cong on the Deterioration and Conservation of Stone,. Glasgow; 2016. p. Vol. 2.

    Google Scholar 

  75. Heaton N. Preservation of stone. J R Soc Arts. 1921;70(3606):124–39.

    Google Scholar 

  76. Delgado Rodrigues J, Costa D. Occurrence and behavior of interfaces in consolidated stones. In: STREMA 95. 1995. p. 71–8.

    Google Scholar 

  77. Delgado Rodrigues J, Costa D. Assessment of the efficacy of consolidants in granites. In: Vicente MA, Delgado Rodrigues J, Acevedo J, editors. EC Workshop Degradation and Conservation of Granitic Rocks in Monuments. Santiago de Compostela, Spain: DG XII, Science, Research and Development, Res. Rep. 5; 1996. p. 63–9.

    Google Scholar 

  78. Tiano P, Delgado Rodrigues J, De Witte E, Vergès-Belmin V, Massey S, Snethlage R, et al. The conservation of monuments: A new method to evaluate consolidating treatments. Int Jour Restor Build Monum. 2000;6(2):133–50.

    Google Scholar 

  79. Drdácký M, Slížková Z. In situ peeling tests for assessing the cohesion and consolidation characteristics of historic plaster and render surfaces. Stud Conserv. 2015;

    Google Scholar 

  80. Mamillan M. Méthodes d’évaluation des dégradations des monuments en pierre. In: Ciabach J, editor. VIth International Congress on Deterioration and Conservation of Stone. Torun, Poland: Nicholas Copernicus University. Press Department; 1988. p. 456–65.

    Google Scholar 

  81. Lombardo T, Simon S. Desalination by Poulticing: Laboratory Study on Controlling Parameters. In: Kwiatkowski D, Löfvendahl R, editors. 10th International Congress on Deterioration and Conservation of Stone. Stockholm; 2004. p. 323–30.

    Google Scholar 

  82. Doehne E, Schiro M, Roby T, Chiari G, Lambousy G, Knight H, et al. Evaluation of poultice desalination process at Madame Johns’ Legacy, New Orleans. In: Lukaszewicz JW, Niemcewicz P, editors. 11th International Congress on Deterioration and Conservation of Stone. Torun, Poland: Nicolaus Copernicus University Press; 2008. p. 857–64.

    Google Scholar 

  83. Pel L, Sawdy A, Voronina V. Physical principles and efficiency of salt extraction by poulticing. J Cult Herit. 2010;11(1):59–67.

    Google Scholar 

  84. Lubelli B, van Hees R. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties. J Cult Herit. 2010;11(1):10–8.

    Google Scholar 

  85. Vergès-Belmin V, Heritage A, Bourgès A. Powdered Cellulose Poultices in Stone and Wall Painting Conservation - Myths and Realities. Stud Conserv [Internet]. 2011;56(4):281–97. Available from: http://www.tandfonline.com/doi/full/10.1179/204705811X13159282692923

    Google Scholar 

  86. Pinna D. Coping with Biological Growth on Stone Heritage Objects. Oakville, Canada: Apple Academic Press; 2017. xviii+359.

    Google Scholar 

  87. Delgado Rodrigues J, Ferreira Pinto AP, Costa D. Tracing of decay profiles and evaluation of stone treatments by means of microdrilling techniques. J Cult Herit. 2002;3(2):117–25.

    Google Scholar 

  88. Delgado Rodrigues J. Consolidation of decayed stones. A delicate problem with few practical solutions. In: Historical Constructions [Internet]. Guimarães, Portugal; 2001. p. 3–14. Available from: http://www.csarmento.uminho.pt/docs/ncr/historical_constructions/page03-14_DDelgado.pdf

  89. Delgado Rodrigues J. Defining, mapping and assessing deterioration patterns in stone conservation projects. J Cult Herit [Internet]. 2015;16(3):267–75. Available from: https://doi.org/10.1016/j.culher.2014.06.007

    Google Scholar 

  90. Ramírez Gallardo A. Supervivencia de una obra hidráulica. El Acueducto de Segovia. Colección. Colegio de Ingenieros de caminos, Canales y Puertos;

    Google Scholar 

  91. Jurado Gimenez F. Acueducto de Segovia. Documentos para una restauración. Restauración Rehabil. 1994;1(Sept-Oct):17–31.

    Google Scholar 

  92. Jurado Gimenez F. El Acueducto romano de Segovia. Rev Obras Publicas. 2001;57:14–23.

    Google Scholar 

  93. Nonfarmale O. A method of consolidation and restoration for decayed sandstones. In: Int Symp on The Conservation of Stone, Bologna. Bologna, Italy; 1975. p. 119–25.

    Google Scholar 

  94. Nonfarmale O. Methods of conservation. In: Centro per la Conservazione delle Sculture all’Aperto, editor. Jacopo della Quercia e la facciata di San Petronio, a Bologna. Bologna, Italy: Edizioni Alfa Bologna; 1981. p. 279–306.

    Google Scholar 

  95. Rossi-Manaresi R, Charola AE, Tucci A, Koestler R, Wheeler G. Study of accelerated weathering of limestones treated with an acrylic-silicone mixture. In: ICOM Committee for Conservation 7th triennial meeting. Copenhagen; 1984. p. 84.10.1–84.10.4.

    Google Scholar 

  96. Rossi-Manaresi R, Alessandrini G, Fuzzi S, Peruzzi R. Assessment of the effectiveness of some preservatives for marble and limestones. In: 3rd International Congress Deterioration and Preservation of Stones. Venice, Italy; 1979. p. 357–76.

    Google Scholar 

  97. Rossi-Manaresi R, Tucci A. SEM examination of a biocalcarenite treated with acrylic polymers, silane or silicone resins. In: Félix G, editor. Vth international congress on deterioration and conservation of stone. Lausanne,Switzerland: Presses Polytechniques Romandes, Lausanne; 1985. p. 871–80.

    Google Scholar 

  98. Charola AE, Tucci A, Koestler RJ. On the reversibility of treatments with acrylic/silicone resin mixtures. J Am Inst Conserv. 1986;25(2):83–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Delgado Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Delgado Rodrigues, J. (2022). Stone Consolidation. Between Science and Practice. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_4

Download citation