Skip to main content

Laser Cleaning on Stonework: Principles, Case Studies, and Future Prospects

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

The use of laser light to selectively remove and/or precisely reduce unwanted layers and encrustations from the surface of cultural heritage (CH) objects and monuments was systematically investigated during the past 30 years bringing about a significant breakthrough in the field. This chapter aims at briefly introducing the reader to the basic concepts of laser cleaning, while highlighting the critical and decisive parameters that determine an efficient and successful laser ablation on stonework. Limitations ensuring a safe process are discussed, and good practice guidelines for laser cleaning interventions are presented, with emphasis to their practical implementation in three laser cleaning projects with different conservation challenges. Finally, ongoing issues related to careful assessment and reliable monitoring of the process are discussed.

Keywords

  • Laser cleaning
  • Stonework
  • Good-practice guide

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_3
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

Notes

  1. 1.

    1 cubic micrometer (μm3) is a SI measurement unit of volume with sides equal to one micrometer (1 μm = 1 10−6 meter = 1 millionth of a meter).

  2. 2.

    1 nanosecond (ns) = 1 10−9 second = 1 billionth of a second.

  3. 3.

    The absorption coefficient (a) defines how much light of a given wavelength/color (λ) is absorbed by a material of a given thickness.

  4. 4.

    The thermal conductivity (k) of a material is a measure of its ability to conduct/transfer heat.

  5. 5.

    The heat capacity (C) denotes the the amount of thermal energy required to raise the temperature of a substance by one degree.

  6. 6.

    λ = The length of one complete light wave. Wavelength is a key characteristic of the laser light, usually fixed for any given laser system, and characterizes the “colour” of its monochromatic dimension (measured in nm).

  7. 7.

    F = the energy (E) delivered per unit area. In practice this is measured as F = E/S (measured in J/cm2), where E is the output energy of the system for a single laser pulse and S the surface of the irradiated area.

  8. 8.

    τp = The duration of a single laser pulse (τp ranging from several microseconds (μs, 10−6 s) to picoseconds (ps, 10−12 s) are commonly used in laser cleaning applications).

  9. 9.

    Transportable pulsed laser cleaning systems emit beams with circular diameter, usually in the range of 5–9 mm. Using appropriate focusing optics the size of the beam diameter can be regulated and eventually focused to as small as 1 mm.

  10. 10.

    Heraklion, GR (1995), Liverpool, UK (1997), Florence, IT (1999), Paris, FR (2001), Osnabrück, DE (2003), Vienna, AU (2005), Madrid, ES (2007), Sibiu, RO (2009), London, UK (2011), Sharjah, UAE (2014), Kraków, PO (2016), Paris, FR (2018) and forthcoming Florence, IT (2022).

  11. 11.

    SFR: Short free running 50–120 μs and LQS: Long Q-switched 120–950 ns.

  12. 12.

    1 ps = 10−12 s = 1 /1000 ns and 1 fs = 10−15 s = 1/1000 ps.

References

  1. Cooper M. Laser Cleaning in Conservation: An Introduction. ed. Oxford: Butterworth- Heinemann; 1998.

    Google Scholar 

  2. Fotakis C, Anglos D, Zafiropulos V, Georgiou S, Tornari V. Lasers in the Preservation of Cultural Heritage; Principles and applications. In: Brown RGW, Pike ER, editors. New York: Taylor and Francis; 2006.

    Google Scholar 

  3. Zafiropoulos V, Balas C, Manousaki A, Marakis Y, Maravelaki-Kalaitzaki P, Melesanaki K, Pouli P, Stratoudaki Th, Klein S, Hildenhagen J, Dickmann K, Luk’Yanchuk BS, Mujat C, Dogariu A. Yellowing effect and discoloration of pigments: Experimental and Theoretical studies. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01205-0.

  4. Pouli P, Oujja M, Castillejo M. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Appl. Phys. A-Materials Sci. Process. 2012. https://doi.org/10.1007/s00339-011-6696-2.

  5. Weeks C. The ‘Portail de la Mere Dieu’ of Amiens cathedral: its polychromy and conservation. Stud. Conserv. 1998. https://doi.org/10.1179/sic.1998.43.2.101.

  6. Shekede L, Post-Prints of the Analysis of Pigments and Plasters. London: United Kingdom Institute for Conservation of Historic and Artistic Works; 1998.

    Google Scholar 

  7. Pouli P, Emmony DC, The effect of Nd:YAG laser radiation on medieval pigments, J. Cult. Heritage, 2000. https://doi.org/10.1016/S1296-2074(00)00143-6.

  8. Athanassiou A, Hill AE, Fourrier T, Burgio L, Clark RJH. The effects of UV laser light radiation on artists’ pigments. J. Cult. Heritage. 2000. https://doi.org/10.1016/S1296-2074(00)00180-1.

  9. Zafiropulos V, Stratoudaki T, Manousaki A, Melesanaki K, Orial G. Discoloration of Pigments Induced by Laser Irradiation, Surface Engineering, 2001. https://doi.org/10.1179/026708401101517773.

  10. Pouli P, Emmony DC, Madden CE, Sutherland I. Analysis of the laser-induced reduction mechanisms of medieval pigments. Appl. Surf. Sci. 2001. https://doi.org/10.1016/S0169-4332(00)00909-0.

  11. Castillejo M, Martín M, Oujja M, Silva D, Torres R, Manousaki A, Zafiropulos V, van den Brink OF, Heeren RMA, Teule R, Silva A, Gouveia H. Analytical Study of the Chemical and Physical Changes Induced by KrF Laser Cleaning of Tempera Paints. Anal. Chem. 2002. https://doi.org/10.1021/ac025778c.

  12. Cooper MI, Fowles PS, Tang CC, Analysis of the laser-induced discoloration of lead white pigment. Appl. Surf. Sci. 2002. https://doi.org/10.1016/S0169-4332(02)00499-3.

  13. Chappé M, Hildenhagen J, Dickmann K, Bredol K, Laser irradiation of medieval pigments at IR, VIS and UV wavelengths. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01206-2.

  14. Keune K, Boon JJ. Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal. Chem. 2005. https://doi.org/10.1021/ac048158f.

  15. Acquaviva S, Baraldi P, D’Anna E, De Giorgi ML, Della Patria A, Giotta L, Omarini S, Piccolo R, Yellow pigments in painting: characterisation and UV laser-induced modifications. J. Raman Spectrosc. 2009. https://doi.org/10.1002/jrs.2316.

  16. Oujja M, Pouli P, Fotakis C, Domingo C, Castillejo M. Analytical Spectroscopic Investigation of Wavelength and Pulse Duration Effects on Laser-Induced Changes of Egg-Yolk-Based Tempera Paints. Applied Spectroscopy. 2010; 64:528–536.

    CAS  CrossRef  Google Scholar 

  17. Oujja M, Sanz M, Rebollar E, Marco JF, Castillejo M, Pouli P, Kogou S, Fotakis C. Wavelength and pulse duration effects on laser induced changes on raw pigments used in paintings. Spectrochim. Acta A Mol. Biomol. 2013. https://doi.org/10.1016/j.saa.2012.10.001.

  18. Vergès-Belmin V, Dignard C. Laser yellowing: myth or reality? J. Cult. Herit. 2003. https://doi.org/10.1016/S1296-2074(02)01203-7.

  19. Klein S, Ferksanati F, Hildenhagen J, Dickmann K, Uphoff H, Marakis Y, Zafiropulos V. Discoloration of marble during laser cleaning by Nd:YAG laser wavelengths. Appl Surf Sci, 2001. https://doi.org/10.1016/S0169-4332(00)00706-6.

  20. Potgieter-Vermaak SS, Godoi RHM, Grieken R, Potgieter JH, Oujja M, Castillejo M. Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim. Acta A Mol. Biomol. 2005. https://doi.org/10.1016/j.saa.2004.09.010.

  21. Gaviño M, Hermosin B, Castillejo M, Oujja M, Rebollar E, Vergès-Belmin V, Nowik W, Saiz-Jimenez C. Black crusts removal: the effect of stone yellowing and cleaning strategies. Air Pollution and Cultural Heritage, CRC Press, 2004, pp. 239–245. https://doi.org/10.1201/b17004-37.

    CrossRef  Google Scholar 

  22. Vergès-Belmin V, Pichot C, Orial G. Elimination de croûtes noires sur marbre et craie : à quel niveau arrêter le nettoyage? In: Thiel M.-J. (Ed.), Conservation of Stone and Other Materials, London: E & FN Spon; 1993, pp. 534–541.

    Google Scholar 

  23. Maravelaki-Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and origin. Anal. Chim. Acta. 2005. https://doi.org/10.1016/j.aca.2004.10.065.

  24. Gracia M, Gavino M, Vergès-Belmin V, Hermosin B, Nowik W, Saiz-Jimenez C. Mössbauer and XRD Study of the Effect of Nd:YAG-1064 nm Laser Irradiation on Hematite Present in Model Samples. In: Dickmann K, Fotakis C, Asmus JF, editors.Lasers in the Conservation of Artworks: LACONA V Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. pp. 341–346. https://doi.org/10.1007/3-540-27176-7_42.

    CrossRef  Google Scholar 

  25. de Oliveira C, Vergès-Belmin V, Demaille D, Bromblet P. Lamp black and hematite contribution to laser yellowing: A study on technical gypsum samples. Stud. Conserv. 2016. https://doi.org/10.1179/2047058415Y.0000000003.

  26. de Oliveira C, Vergès-Belmin V, Lafait J, Swider M, Andraud C, Tournié A, Galoisy L. Contribution of goethite to laser-induced stone yellowing. Appl. Phys. A. 2016. https://doi.org/10.1007/s00339-016-9818-z.

  27. Godet M, Vergès-Belmin V, Bromblet P, Colombini A, Saheb M, Andraud C. Fly-ash contribution to Nd:YAG laser yellowing and its mitigation using UV-B light. J. Cult. Heritage. 2018. https://doi.org/10.1016/j.culher.2017.07.005.

  28. Bartoli L, Pouli P, Fotakis C, Siano S, Salimbeni R. Characterization of Stone Cleaning by Nd:YAG Lasers with Different Pulse Duration. Laser Chemistry. 2006. https://doi.org/10.1155/2006/81750.

  29. Marakis G, Pouli P, Zafiropulos V, Maravelaki-Kalaitzaki P. Comparative study on the application of the first and the third harmonic of a Nd:YAG laser system to clean black encrustation on marble. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01208-6.

  30. Pouli P, Fotakis C, Hermosin B, Saiz-Jimenez C, Domingo C, Oujja M, Castillejo M.The laser-induced discoloration of stonework; a comparative study on its origins and remedies. Spectrochim. Acta A Mol. Biomol. 2008. https://doi.org/10.1016/j.saa.2008.02.031.

  31. Pouli P, Papakonstantinou E, Frantzikinaki K, Panou A, Frantzi G, Vasiliadis C, Fotakis C. The two-wavelength laser cleaning methodology; Theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis Sculptures. Herit.Sci. 2016. https://doi.org/10.1186/s40494-016-0077-2.

  32. Pouli P, Zafiropulos V, Fotakis C. The Combination of Ultraviolet and Infrared Laser Radiation for the Removal of Unwanted Encrustation from Stonework; a Novel Laser Cleaning Methodology. In: Kwiatkowski D, Lofvendahl R, editors. Proceedings of the 10th International Congress on Deterioration and Conservation of Stone: Stockholm, June 27-July 2, 2004. Stockholm: ICOMOS Sweeden; 2004. pp. 315–322. ISBN: 9163114585.

    Google Scholar 

  33. Pouli P, Frantzikinaki K, Papakonstantinou E, Zafiropulos V, Fotakis C. Pollution encrustation removal by means of combined ultraviolet and infrared laser radiation: The application of this innovative methodology on the surface of the Parthenon West Frieze. In: Dickmann K, Fotakis C, Asmus JF, editors. Springer Proceedings in Physics 100; 2005, pp. 333–340. https://doi.org/10.1007/3-540-27176-7_41.

  34. Papanikolaou A, Siozos P, Philippidis A, Melessanaki K, Pouli P. Towards the understanding of the two wavelength laser cleaning in avoiding yellowing on stonework: a micro-Raman and LIBS study. In Targowski P, Walczak M, Pouli P editors. Lasers in the Conservation of Artworks XI, Proceedings of LACONA XI. Torun: NCU Press; 2017, pp. 95–104. https://doi.org/10.12775/3875-4.0.

  35. Asmus JF, Guattari J, Lazzarini L. Holography in the conservation of statuary, Stud. Conserv. 1973. https://doi.org/10.1179/sic.1973.005.

  36. Asmus JF, Murphy CG, Munk WH. Studies on the interaction of lasers with art artifacts, In Developments in laser Technology II. International Society for Optics and Photonics. 1974. pp. 19–30. https://doi.org/10.1117/12.953831.

  37. Asmus JF, Seracini M, Zetler MJ. Surface morphology of laser-cleaned stone. Lithoclastia. 1976;1;23–46.

    Google Scholar 

  38. Asmus JF. Light cleaning: laser technology for surface preparation in the arts. Technology and Conservation. 1978;3;14–18.

    Google Scholar 

  39. Cooper MI, Emmony DC, Larson J. Characterization of laser cleaning of limestone. Opt. Laser Technol. 1995. https://doi.org/10.1016/0030-3992(95)93962-Q.

  40. Cooper MI, Larson JH. The use of laser cleaning to preserve patina on marble sculpture, Conservator. 1996. https://doi.org/10.1080/01410096.1996.9995100.

  41. Watkins KG. A review of materials interaction during laser cleaning in art restoration. In Kautek W, Konig E editors. LACONA I Proceedings –Restauratorenblätter. Vienna: Mayer & Corp; 1997. pp. 7.

    Google Scholar 

  42. Beadman K, Scarrow J. Laser cleaning Lincoln Cathedral’s Romanesque frieze, J. Architectural Conserv. 1998. https://doi.org/10.1080/13556207.1998.10785215.

  43. Calcano G, Koller M, Nimmrichter H. Laser based cleaning on stonework at St. Stephen’s Cathedral Vienna. In Kautek W, Konig E editors. LACONA I Proceedings -Restauratorenblätter. Vienna: Mayer & Corp; 1997. pp. 39

    Google Scholar 

  44. Calcagno G, Pummer E, Koller M. St. Stephen’s Church in Vienna: criteria for Nd:YAG laser cleaning on an architectural scale. J. Cult. Heritage. 2000. https://doi.org/10.1016/S1296-2074(00)00138-2.

  45. Armani E, Calcagno G, Menichelli C, Rossetti M. The church of the Maddalena in Venice: the use of laser in the cleaning of the façade. J. Cult. Heritage. 2000. https://doi.org/10.1016/S1296-2074(00)00134-5.

  46. Siano S, Margheri F, Pini R, Mazzinghi P, Salimbeni R. Cleaning processes of encrusted marbles by Nd:YAG lasers operating in free-running and Q-switching regimes. Appl. Opt.1997. https://doi.org/10.1364/AO.36.007073.

  47. Salimbeni R, Pini R, Siano S. A variable pulse width Nd:YAG laser for conservation, J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01149-4.

  48. Innocenti C, Pieri G, Yanagishita M, Pini R, Siano S, Zanini A. Application of laser welding to the restoration of the ostensory of the martyr St. Ignatius from Palermo. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01146-9.

  49. Siano S, Salimbeni R. Τhe Gate of Paradise: physical optimization of the laser cleaning approach. Studies in Conservation. 2001. https://doi.org/10.2307/1506776.

  50. Siano S, Casciani A, Giusti A, Matteini M, Pini R, Porcinai S, Salmbeni R. The Santi Quattro Coronati by Nanni di Banco: cleaning of the gilded decorations. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01139-1.

  51. Siano S, Giusti A, Pinna D, Porcinai S, Giamello M, Sabatini G, Salimbeni R. The Conservation Intervention on the Porta della Mandorla. In Dickmann K, Fotakis C, Asmus JF editors. Lasers in the Conservation of Artworks- LACONA V. Springer Proceedings in Physics 100. Berlin, Heidelberg: Springer; 2005. pp. 171–178. https://doi.org/10.1007/3-540-27176-7_22.

  52. Siano S, Giamello M, Bartoli L, Mencaglia A, Parfenov V, Salimbeni R. Laser cleaning of stone by different laser pulse duration and wavelength. Laser Phys. 2008. https://doi.org/10.1134/S1054660X08010064.

  53. Siano S, Agresti J, Cacciari I, Ciofini D, Mascalchi M, Osticioli I, Mencaglia AA. Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A. 2012. https://doi.org/10.1007/s00339-011-6690-8.

  54. Osticioli I, Mascalchi M, Pinna D, Siano S. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: comparison among different pulse durations and wavelengths. Appl. Phys. A. 2015. https://doi.org/10.1007/s00339-014-8933-y.

  55. Hontzopoulos E, Fotakis C, Doulgeridis M. Excimer Laser in Art Restoration. Proc. SPIE 1810, 9th International Symposium on Gas Flow and Chemical Lasers, (4 May 1993); pp. 748–751. https://doi.org/10.1117/12.144595.

  56. Maravelaki PV, Zafiropulos V, Kylikoglou V, Kalaitzaki MP, Fotakis C. Laser Induced Breakdown Spectroscopy as a Diagnostic Technique for the Laser Cleaning of Marble. Spectrochim Acta Part B At Spectrosc. 1997. https://doi.org/10.1016/S0584-8547(96)01573-X.

  57. Maravelaki PV, Zafiropulos V, Kylikoglou V, Kalaitzaki MP, Fotakis C. Diagnostic Techniques for Laser Cleaning of Marble. In Kautek W, Konig E editors. LACONA I Proceedings -Restauratorenblätter. Vienna: Mayer & Corp; 1997. pp. 31–35.

    Google Scholar 

  58. Gobernado-Mitre I, Prieto AC, Zafiropulos V, Spetsidou Y, Fotakis C. On-line monitoring of laser cleaning of limestone by laser induced breakdown spectroscopy. Applied Spectroscopy. 1997. https://doi.org/10.1366/0003702971941944.

  59. Georgiou S, Zafiropulos V, Anglos D, Balas C, Tornari V, Fotakis C. Excimer laser restoration of painted artworks: procedures, mechanisms and effects, Appl. Surf. Sci. 1998. https://doi.org/10.1016/S0169-4332(97)00734-4.

  60. Maravelaki-Kalaitzaki P, Zafiropulos V, Pouli P, Anglos D, Balas C, Salimbeni R, Siano S, Pini R. Short Free Running Nd:YAG laser to clean different encrustation on Pentelic marble: procedure and evaluation of the effects. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01151-2.

  61. Pouli P, Selimis A, Georgiou S, Fotakis C. Recent studies of laser science in paintings conservation and research. Accounts of Chemical Research, 2010. https://doi.org/10.1021/ar900224n.

  62. Anglos D, Detalle V. Cultural heritage applications of LIBS. In Mussazi A, Perini U. Laser-Induced Breakdown Spectroscopy – Theory and Applications, Springer Series in Optical Sciences 182. Berlin Heidelberg: Springer-Verlag; 2014. pp. 531–553. https://doi.org/10.1007/978-3-642-45085-3_20.

    CrossRef  Google Scholar 

  63. deCruz A, Wolbarsht ML, Hauger SA. Laser removal of contaminants from painted surfaces. J. Cult. Heritage. 2000. https://doi.org/10.1016/S1296-2074(00)00182-5.S173.

  64. Bracco P, Lanterna G, Matteini M, Nakahara K, Sartiani O, deCruz A, Wolbarsht ML, Adamkiewicz E, Colombini MP. Er:YAG laser: an innovative tool for controlled cleaning of old paintings: testing and evaluation. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01232-3.

  65. deCruz A, Wolbarsht M, Palmer R, Pierce S, Adamkiewicz, E. Er:YAG Laser Applications on Marble and Limestone Sculptures with Polychrome and Patina Surfaces. In Dickmann K, Fotakis C, Asmus JF editors. Lasers in the Conservation of Artworks- LACONA V. Springer Proceedings in Physics 100. Berlin, Heidelberg: Springer; 2005. pp. 113–124. https://doi.org/10.1007/3-540-27176-7_14.

  66. deCruz A, Wolbarsht M, Andreotti A., Colombini M, Pinna D, Culberson C. Investigation of the Er:YAG Laser at 2.94 μm to Remove Lichens Growing on Stone. Studies in Conservation. 2009. https://doi.org/10.1179/sic.2009.54.4.268.

  67. Pereira-Pardo L, Korenberg C. The use of erbium lasers for the conservation of cultural heritage. A review. J. Cult. Heritage. 2018. https://doi.org/10.1016/j.culher.2017.10.007.

  68. Andreotti A, Colombini M, DeCruz A. Er:YAG laser cleaning of a marble Roman urn. Journal of the Institute of Conservation. 2020. https://doi.org/10.1080/19455224.2019.1706593.

  69. Pozo-Antonio JS, Papanikolaou A, Melessanaki K, Rivas T, Pouli P. Laser assisted removal of graffiti from granite: advantages of the simultaneous combination of two wavelengths. Coatings. 2018. https://doi.org/10.3390/coatings8040124.

  70. Grammatikakis G, Demadis KD, Melessanaki K, Pouli P. Laser assisted removal of dark cement crusts from the mineral gypsum (selenite) architectural elements from the peripheral monuments of the archaeological site of Knossos. Studies in Conservation. 2015. https://doi.org/10.1179/0039363015Z.000000000201.

  71. Andreotti A, Colombini MP, Nevin A, Melessanaki K, Pouli P, Fotakis C. Multianalytical Study of Laser Pulse Duration Effects in the IR Laser Cleaning of Wall Paintings from the Monumental Cemetery of Pisa. Laser Chemistry. 2006. https://doi.org/10.1155/2006/39046.

  72. Papadakis V, Loukaiti A, Pouli P, A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J. Cult. Heritage. 2020. https://doi.org/10.1016/j.culher.2009.10.007.

  73. Kapsalas P, Maravelaki-Kalaitzaki P, Zervakis M, Delegou ET, Moropoulou A. Optical inspection for quantification of decay on stone surfaces. NDT & E International. 2007. https://doi.org/10.1016/j.ndteint.2006.07.012.

  74. Fortes FJ, Cabalín LM, Laserna JJ. The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochim Acta Part B At Spectrosc. 2008. https://doi.org/10.1016/j.sab.2008.06.009.

  75. Colao F, Fantoni R, Lazic V, Caneve L, Giardini A, Spizzichino V. LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results. J. of Analytical Atomic Spectrometry. 2004. https://doi.org/10.1039/B315488B.

  76. Targowski P, Iwanicka M. Optical Coherence Tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A. 2012. https://doi.org/10.1007/s00339-011-6687-3.

  77. Striova J, Fontana R, Barucci M, Felici A, Marconi E, Pampaloni E, Raffaelli M, Riminesi C. Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchemical Journal. 2016. https://doi.org/10.1016/j.microc.2015.09.005.

  78. Márton Zs, Kisapáti I, Török Á, Tornari V, Bernikola E, Melessanaki K, Pouli P. Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples NDT&E INTERNATIONAL. 2014. https://doi.org/10.1016/j.ndteint.2014.01.007.

  79. Tornari V, Bernikola E, Hatzigiannakis K, Melessanaki K, Pouli P. Synchronized deformation monitoring in laser cleaning: an application for Cultural Heritage conservation. Universal Journal of Physics and Application. 2013. https://doi.org/10.13189/ujpa.2013.010215.

  80. Tserevelakis GJ, Pozo-Antonio JS, Siozos P, Rivas T, Pouli P, Zacharakis G. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cul Her. 2018. https://doi.org/10.1016/j.culher.2018.05.014.

  81. Papanikolaou A, Tserevelakis GJ, Melessanaki K, Fotakis C, Zacharakis G, Pouli P. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto-Electronic Advances. 2020. https://doi.org/10.29026/oea.2020.190037.

  82. Tserevelakis GJ, Pouli P, Zacharakis G. Listening to laser light interactions with objects of art: a novel photoacoustic approach for diagnosis and monitoring of laser cleaning interventions. Herit Sci. 2020. https://doi.org/10.1186/s40494-020-00440-w.

  83. Frantzikinaki K, Panou A, Vasiliadis C, Papakonstantinou E, Pouli P, Ditsa Th, Zafiropulos V, Fotakis C. The cleaning of the Parthenon west frieze: an innovative laser methodology. In: Kwiatkowski D, Lofvendahl R, editors. The proceedings of the 10th International Congress on Deterioration and Conservation of Stone, ICOMOS; 2004, Stockholm Sweden, pp. 801–808.

    Google Scholar 

  84. Frantzikinaki K, Marakis G, Panou A, Vasiliadis C, Papakonstantinou E, Pouli P, Ditsa Th, Zafiropulos V, Fotakis C. The Cleaning of the Parthenon West Frieze by Means of Combined Infrared and Ultraviolet Radiation. In: Nimmrichter J, Kautek W, Schreiner M, editors. Springer Proceedings in Physics 116, 2007. pp. 97–104. https://doi.org/10.1007/978-3-540-72130-7_12.

  85. Pouli P, Zafiropulos V, Balas C, Doganis Y, Galanos A. Laser cleaning of inorganic encrustation on excavated objects: evaluation of the cleaning result by means of multi-spectral imaging. J. Cult. Heritage. 2003. https://doi.org/10.1016/S1296-2074(02)01217-7.

  86. Sarantopoulou E, Kollia Z, Gomoi I. Preventing biological activity of Ulocladium sp spores in artifacts using 157 nm laser. Appl. Phys. A. 2006. https://doi.org/10.1007/s00339-006-3554-8.

  87. López AJ, Lamas J, Ramil A, Yáñez A, Rivas T, Taboada J. Optimization of laser cleaning parameters for the removal of biological black crusts in granites. In: Radvan R, Asmus JF, Castillejo M, Pouli P, Nevin, editors. Lasers in the Conservation of Artworks VIII. London: Taylor & Francis Books; 2010. pp. 105. https://doi.org/10.1201/b10567-18.

    CrossRef  Google Scholar 

  88. Speranza M, Sanz M, Oujja M, de los Rios A, Wierzchos J, Pérez-Ortega S, Castillejo M, Ascaso C. Nd-YAG laser irradiation damages to Verrucaria nigrescens. International Biodeterioration & Biodegradation. 2013. https://doi.org/10.1016/j.ibiod.2012.02.010.

  89. Mascalchi M, Osticioli I, Cuzman OA, Mugnaini S, Giamello M, Siano S. Laser removal of biofilm from Carrara marble using 532 nm: The first validation study. Measurement. 2018. https://doi.org/10.1016/j.measurement.2018.08.012.

  90. Costela A, García-Moreno I, Gomez C, Caballero O, Sastre R. Cleaning graffitis on urban buildings by use of second and third harmonic wavelength of a Nd:YAG laser: A comparative study. Appl. Surf. Sci. 2003. https://doi.org/10.1016/S0169-4332(02)01241-2.

  91. Gomez C, Costela A, García-Moreno I, Sastre R. Comparative study between IR and UV laser radiation applied to the removal of graffitis on urban buildings. Appl. Surf. Sci. 2006. https://doi.org/10.1016/j.apsusc.2005.04.051.

  92. Sanjeevan P, Klemm AJ, Klemm P. Removal of graffiti from the mortar by using Q-switched Nd:YAG laser. Appl. Surf. Sci. 2007. https://doi.org/10.1016/j.apsusc.2007.04.030.

  93. Samolik S, Walczak M, Plotek M, Sarzynski A, Pluska I, Marczak J. Investigation into the removal of graffiti on mineral supports: Comparison of nanosecond Nd:YAG laser cleaning with traditional mechanical and chemical methods. Stud. Conserv. 2015. https://doi.org/10.1179/0039363015Z.000000000208.

  94. Pozo-Antonio JS, Rivas T, Fiorucci M.P, López AJ, Ramil A. Effectiveness and harmfulness evaluation of graffiti cleaning by mechanical, chemical and laser procedures on granite. Microchem. J. 2016. https://doi.org/10.1016/j.microc.2015.10.040.

  95. Doganis Y, Galanos A, Legakis A, Pouli P, Melessanaki K. The conservation of fifteen islamic plaster stained glass windows, the Benaki Museum Islamic Art Collection. In: Kwiatkowski D, Lofvendahl R, editors. Proceedings of the 10th International Congress on Deterioration and Conservation of Stone: Stockholm, June 27-July 2, 2004. Stockholm: ICOMOS Sweeden; 2004. pp. 1025–1032. ISBN: 9163114585

    Google Scholar 

  96. Rozniakowski K, Klemm P, Klemm AJ. Some experimental results of laser beam interaction with surface layer of brick. Building and Environment. 2001. https://doi.org/10.1016/S0360-1323(00)00012-3.

  97. Pozo-Antonio JS, Rivas T, López AJ, Fiorucci MP, Ramil A. Effectiveness of granite cleaning procedures in cultural heritage: A review. Science of the Total Environment. 2016. https://doi.org/10.1016/j.scitotenv.2016.07.090.

  98. Pozo-Antonio JS, Papanikolaou A, Philippidis A, Melessanaki K, Rivas T, Pouli P. Cleaning of gypsum-rich black crusts on granite using a dual wavelength Q-Switched Nd:YAG laser. Constr. Build. Mater. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.298.

  99. Platia N, Chatzidakis M, Doerr C, Charami L, Bekiari Ch, Melessanaki K, Hatzigiannakis K, Pouli P. ‘POLYGNOSIS’: the development of a thesaurus in an Educational Web Platform on optical and laser-based investigation methods for cultural heritage analysis and diagnosis. Herit. Sci. 2017. https://doi.org/10.1186/s40494-017-0163-0.

Download references

Acknowledgments

This manuscript reflects knowledge gained within the past 20 years through multidisciplinary research carried out at IESL-FORTH. Fruitful teamwork with all the colleagues who contributed to the experiments and applications, as presented in the original publications, is acknowledged, while the guidance and collaboration from the personnel of the Acropolis Restoration Service, the Acropolis Museum, “Lithou Sintirissis” Conservation Associates, and the Ephorate of Antiquities of Heraklion in Crete is considered particularly important. Financial support by several National, European, and other funds was decisive for this research. The EU Research Infrastructures operating at FORTH (a) ULF-FORTH offering transnational access since 1990 as an active partner and among the founders of LASERLAB Europe, (b) IPERION-CH, H2020-GA-654028, (c) IPERION-HS, H2020-GA-871034 and (d) E-RIHS.eu) ensured the ideal research environment to strengthen the laser research landscape and foster networking between the laboratories and CH end-users.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Pouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pouli, P. (2022). Laser Cleaning on Stonework: Principles, Case Studies, and Future Prospects. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_3

Download citation