Skip to main content

Surface Cleaning: Implications from Choices & Future Perspectives

  • 240 Accesses

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

In this chapter, an overview of the main cleaning techniques used in the past and trends in cleaning interventions are presented and discussed. The requirements for the selection of the best cleaning methodology according to the substrate, deterioration pattern, and micro- and macro- environmental factors are discussed. An overview of different classes of cleaning methods is presented, with a particular focus on the best methodologies and materials for mechanical and chemical cleaning. In particular, the application of innovative nanogels, nanofluids, poultice, micelle solutions, and microemulsions for stone cleaning and desalination are described. Some case studies summarising results published in the literature on the use of mechanical, chemical, and nanogel cleaning are presented and discussed. Raising awareness, providing specific guidelines, and establishing collaboration amongst experts from different disciplines in charge of carrying out diagnostic, cleaning, and evaluation methods are highlighted in this chapter.

Keywords

  • Stone
  • Diagnostic
  • Cleaning water-based methods
  • Cleaning nanogels
  • Evaluation
  • Case studies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_2
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  1. Ashurst N. Cleaning Historic Buildings. Volume One: Substrates, Soiling & Investigation. Volume Two: Cleaning Materials & Processes. London: Donhead Publishing Ltd.; 1994.

    Google Scholar 

  2. Wilhelm K, Longman J, Orr SA, Viles H. Stone-built heritage as a proxy archive for long-term historical air quality: A study of weathering crusts on three generations of stone sculptures on Broad Street. Oxford, Science of The Total Environment. 2021; 759. https://doi.org/10.1016/j.scitotenv.2020.143.

  3. Maravelaki-Kalaitzaki P and Biscontin G. Origin, characteristics and morphology of weathering crusts on Istria stone in Venice. Atmospheric Environment. 1999;33(11):1699–1709.

    CAS  Google Scholar 

  4. García-Florentino C, Maguregui M, Ciantelli C, Sardella A, Bonazza A, Queralt I, Carrero JA, Natali C, Morillas H, Madariaga JM, Arana G. Deciphering past and present atmospheric metal pollution of urban environments: The role of black crusts formed on historical constructions. Journal of Cleaner Production. 2020;243. https://doi.org/10.1016/j.jclepro.2019.118594.

  5. Maintenance of pointing in historic buildings: decay and replacement. Final Report, EU-project POINTING, contract ENV4-CT98-706.

    Google Scholar 

  6. EN 15898:2011. Conservation of cultural property – Main general terms and definition.

    Google Scholar 

  7. Delgado Rodrigues J, Grossi A. Indicators and rating for the compatibility assessment of conservation actions. Journal of Cultural heritage. 2007;8:320–43.

    Google Scholar 

  8. Ashurst N. Introduction, Journal of Architectural Conservation. 2005; 3:2–6. DOI: https://doi.org/10.1080/13556207.2005.10784949

  9. Snethlage R. Stone Conservation. In: Siegesmund S., Snethlage R. editor. Stone in Architecture. Springer, Berlin, Heidelberg. 2014. https://doi.org/10.1007/978-3-642-45155-3_7

    CrossRef  Google Scholar 

  10. Robert CM, Grimmer EA. Assessing Cleaning and Water-Repellent Treatments for Historic Masonry Buildings. National Park Service. 2000

    Google Scholar 

  11. Maravelaki-Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin. Analytica Chimica Acta. 2005;532:187–198.

    CAS  Google Scholar 

  12. Gomez-Heras M, Smith BJ, Viles, H. A Laboratory modelling of gypsum crust growth on lime-stone related to soot pollution and gaseous sulphur: implications of ‘cleaner’ environments for stone decay. In:Lukaszewicz J.W.&Niemcewicz P, editors. Proceedings of the 11th International Congresson Deterioration and Conservation of Stone, Nicolaus Copernicus UniversityPress Torun, 2008. 105–112

    Google Scholar 

  13. Ashurst J, Dimes FG. Conservation of buildings and decorative stone. London: Butterworth Heineman vol 2; 1990. p 174–184, 229.

    Google Scholar 

  14. Martin B Cleaning British limestone –what are the methods to arrive at optimal solutions. In: Domstiftung Regensburg Turm Fassade Portal. Regensbur: Sept. Schnell & Steiner; 2000a. p 99–103.

    Google Scholar 

  15. Ball J, Laing R, Young M. Stone Cleaning: Comparing Perceptions with Physical and Financial Implications, Journal of Architectural Conservation. 2000; 6:2: 47–62. DOI: https://doi.org/10.1080/13556207.2000.10785269

  16. Young ME, Urquhart DCM, Laing R, Maintenance and repair issues for stone cleaned sandstone and granite building façades. Building and Environment. 2003;38:9:1125–1131. DOI: https://doi.org/10.1016/S0360-1323(03)00084-2

    CrossRef  Google Scholar 

  17. Maxwell, I. Stone cleaning: for better or worse? An overview. In Robin G.M. Webster, editor. Stone cleaning and the nature, soiling and decay mechanisms of stone. Proceedings of the international conference held in, Edinburgh UK, 14–16 April 1992. London: Routledge; 1992. p. 3–49. ISBN 1-873394-098.

    Google Scholar 

  18. Winkler EM. Properties, Durability. In Stone in Architecture. 3rd ed, Berlin: Springer-Verlag, 1997.

    Google Scholar 

  19. De Frascá MHBO, Navarro FC, Quitete EB. Staining tests for granitic stone conservation. In Preservation of Cultural Heritage. Engineering Geology for Society and Territory; 2015;8:511–514.

    Google Scholar 

  20. Torraca G. Porous Building Materials, Rome: ICCROM (International Centre for the Study of the preservation and the restoration of Cultural Property). 1982.

    Google Scholar 

  21. Conahan, Heather. An Assessment of the Effects of Hydrofluoric Acid Based Cleaner on Unglazed Architectural Terracotta. (Masters Thesis). Philadelphia, PA: University of Pennsylvania. http://repository.upenn.edu/hp_theses. 1999.

  22. Vergèc-Belmin V, Heritage A, Bourgèc A. Powdered Celluloce Poulticec in Stone and Wall Painting Concervation - Mythc and Realitiec. Studiec in Concervation. 2001;56:4:281–297. DOI: https://doi.org/10.1179/204705811X13159282692923

    CAS  CrossRef  Google Scholar 

  23. Guidetti V, Uminski M. Ion Exchange Resins for Historic Marble Desulfatation and Restoration. In Vasco Fassina, editor. Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, Venice, June 19–24, 2000, vol. 2. Amsterdam: Elsevier Science B.V.; 2000. p. 327–333.

    Google Scholar 

  24. Giovagnoli A, Meucci, Tabasso Laurenzi M. Ion Exchange Resins Employed in the Cleaning of Stones and Plasters: Research of Optimal Employment Conditions and Control of their Effects. In Deterioramento e Conservazione della Pietra: Atti del 3 Congresso Intemazionale, Venice, October 24-27 1979. Padova: Instituto di Chimica Industriale, Università degli Studi di Padova; 1982. p. 499–510.

    Google Scholar 

  25. Boccalon E, Nocchetti M, Pica M, Romani A, Casciola M. Layered double hydroxide and zirconium phosphate as ion exchangers for the removal of ‘black crusts’ from the surface of ancient monuments. Dalton Trans. 2018. DOI: https://doi.org/10.1039/c7dt0395

  26. Willett C. The Conservation, Repair and Management of War Memorials, Published by Historic England. 2017 HistoricEngland.org.uk/advice/caring-for-heritage/war-memorials/. Published 14 June 2017

  27. Gulotta D, Saviello D, Gherardi F, Toniolo L, Anzani M, Rabbolini A, Goidanich S, Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan. Heritage Science. 2014;2:1.

    Google Scholar 

  28. Appolonia L, Bertone A, Brunetto A, Vaudan D, The St. Orso Priory: the comparison and testing of cleaning methods. Journal of Cultural Heritage. 2000;1:S105–S110.

    Google Scholar 

  29. Werner M. Research on cleaning methods applied to historical stone monuments. In Baer NS, Sabbioni S, Sors AI, editors. Science, technology, and European cultural heritage: proceedings of the European symposium. Boston: Published for the Commission of the European Communities by Butterworth-Heinemann Publishers. 1991. p. 688–691.

    Google Scholar 

  30. Iglesias-Campos MÁ, Prada Pérez JL, Fortes SG. Microblasting cleaning for façade repair and maintenance: Selecting technical parameters for treatment efficiency. Construction and Building Materials. 2015;94: 605–612.

    CAS  Google Scholar 

  31. Perez-Monserrat E, Varas M, Fort R, De Buergo M. Assessment of Different Methods for Cleaning the Limestone Façades of the Former Workers Hospital of Madrid, Spain. Studies in Conservation. 2011; 56(4):298–313.

    CAS  Google Scholar 

  32. Normandin KC, Weiss NR, Slatonm D. Cleaning techniques in conservation practice. Donhead. 2005; 146. ISBN 978-187-3394-748.

    Google Scholar 

  33. Franzoni E, Volpi L, Bonoli A, Spinelli R, Gabrielli R. The environmental impact of cleaning materials and technologies in heritage buildings conservation. Energy and Buildings. 2018;165:92–105. https://doi.org/10.1016/j.enbuild.2018.01.051.

    CrossRef  Google Scholar 

  34. Franzoni E, Volpi L, Bonoli A. Applicability of life cycle assessment methodology to conservation works in historical building: the case of cleaning. Energy and Buildings. 2020; 214. ISSN 0378-7788.

    Google Scholar 

  35. Odgers D, Henry A. Practical Building Conservation: Stone. Ashgate Publishing, Ltd. 2012; 338.

    Google Scholar 

  36. Moropoulou A, Delegou ET, Avdelidis NP, Koui M. Assessment of cleaning conservation interventions on architectural surfaces using an integrated methodology. In: Vandiver P, Goodway M, Druzik JR, Mass JL, editors. Materials issues in art and archaeology VI, vol. 712. Pittsburgh: Publ. Materials Research Society. 2002;69–76.

    Google Scholar 

  37. Agrawal OP, Singh T, Kharbade BV, Jain KK, Joshi GP: Discolouration of Taj Mahal marble – a case study. In: Grimstad K, editor. ICOM committee for conservation: 8th triennial meeting. Volume II. The Getty Conservation Institute; 1987: 447–52.

    Google Scholar 

  38. Cushmann M, Wolbers R. A new approach to cleaning Iron stained marble surfaces. WAAC Newsletter. 2007;29: 23–28.

    Google Scholar 

  39. Bams V, Dewaele S. Staining of white marble. Materials Characterization. 2007; 58:11: 1052–1062.

    CAS  Google Scholar 

  40. Pinna D, Galeotti M, Rizzo A. Brownish alterations on the marble statues in the church of Orsanmichele in Florence: what is their origin?. Heritage Science. 2015;3:7 https://doi.org/10.1186/s40494-015-0038-1.

    CAS  CrossRef  Google Scholar 

  41. Matero FG, Tagle AA. Cleaning, iron stain removal, and surface repair of architectural marble and crystalline limestone: The metropolitan club. Journal of the American Institute for Conservation. 1995;34:1:49–68.

    Google Scholar 

  42. Macchia A, Sammartino MP, Laurenzi Tabasso M. A new method to remove copper corrosion stains from stone surfaces. J Archaeol Sci. 2011; 38:1300–7.

    Google Scholar 

  43. Werner A, Synthetic Materials in Art Conservation. Journal of Chemical Education. 1981; 58:4: 321–324.

    CAS  Google Scholar 

  44. Horie CV. Materials for conservation: organic consolidants, adhesives and coatings. Routledge; 2010.

    Google Scholar 

  45. Oddy A. The conservation of marble sculptures in the British Museum before 1975. Stud Conserv. 2002;47:145–54.

    Google Scholar 

  46. Gervais C, Grissom CA, Little N, Wachowiak MJ. Cleaning Marble with Ammonium Citrate. Studies in Conservation. 2010;55(3):164–176. https://doi.org/10.1179/sic.2010.55.3.164

    CAS  CrossRef  Google Scholar 

  47. Taxiarchou M, Panias D, Douni I, Paspaliaris I, Kontopoulos A. Removal of iron from silica sand by leaching with oxalic acid. Hydrometallurgy. 1997;46:1:215–227.

    CAS  Google Scholar 

  48. Young ME, D. Urquhart CM. Algal growth on building sandstones: effects of chemical stone cleaning methods. Quarterly Journal of Engineering Geology and Hydrogeology. 1998;31:315–324. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.04

    CrossRef  Google Scholar 

  49. Overview report Biocides DG Health and Food Safety Luxembourg: Publications Office of the European Union, 2019, doi:10.2772/55801 ND-BC-14-001-EN-N.

    Google Scholar 

  50. Urzí C, de Leo F. Evaluation of the efficiency of water repellent and biocide compounds against microbial colonization of mortars. Int Biodet Biodeg. 2007;60:25–34.

    Google Scholar 

  51. Toreno G, Isola D, Meloni P, Carcangiu G, Selbmann L, Onofri S, Caneva G, Zucconi L. Biological colonization on stone monuments: A new low impact cleaning method. Journal of Cultural Heritage. 2018;30:100–109. https://doi.org/10.1016/j.culher.2017.09.004.

    CrossRef  Google Scholar 

  52. Pinna D, Galeotti M, Perito B, Daly G, Salvadori B. In situ long-term monitoring of recolonization by fungi and lichens after innovative and traditional conservative treatments of archaeological stones in Fiesole (Italy). International Biodeterioration & Biodegradation. 2018;132:49–58. https://doi.org/10.1016/j.ibiod.2018.05.003.

    CAS  CrossRef  Google Scholar 

  53. Charola AE, Bläuer C. Salts in masonry: an overview of the problem. Restor. Build. Monuments. 2015;21:119–135.

    Google Scholar 

  54. Lombardo T, Simon S. Desalination by poulticing. Laboratory study on controlling parameters. In: Kwiatkowski D, Löfvendahl R, editors. Proceedings of the 10th international congress on deterioration and conservation of stone, Stockholm, 27 June–2 July. Stockholm: ICOMOS; 2004. p 323–330.

    Google Scholar 

  55. Egartner I, Sass O. Using paper pulp poultices in the field and laboratory to analyse salt distribution in building limestones. Herit Sci. 2016;4:41. https://doi.org/10.1186/s40494-016-0110-5

    CAS  CrossRef  Google Scholar 

  56. van Hees RPJ, Naldini S, Lubelli B. The development of MDDS-COMPASS. Compatibility of plasters with salt loaded substrates. Compass – Construction and Building Materials. 2009; 23( 5):1719–173.

    Google Scholar 

  57. Lubelli B, Van Hees RPJ. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties. Journal of Cultural Heritage. 2010;11(1):10–18.

    Google Scholar 

  58. Granneman SJC, Lubelli B, van Hees RPJ. Mitigating salt damage in building materials by the use of crystallization modifiers – a review and outlook. Journal of Cultural Heritage. 2019;40:183–194. https://doi.org/10.1016/j.culher.2019.05.004.

    CrossRef  Google Scholar 

  59. Baglioni P, Berti D, Bonini M, Carretti E, Dei L, Fratini E, Giorgi R. Micelle, microemulsions, and gels for the conservation of cultural heritage. Advances in colloid and interface science. 2014;205:361–371.

    CAS  Google Scholar 

  60. Domingues J, Bonelli N, Giorgi R, Baglioni P. Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics. 2014;A 114:705–710.

    Google Scholar 

  61. Carretti E, Dei L, Baglioni P. Solubilization of acrylic and vinyl polymers in nanocontainer solutions. Application of microemulsions and micelles to cultural heritage conservation. Langmuir. 2003;19:19:7867–7872.

    CAS  Google Scholar 

  62. Baglioni M, Benavides YJ, Desprat-Drapela A, Giorgi R. Amphiphile-based nanofluids for the removal of styrene/acrylate coatings: Cleaning of stucco decoration in the Uaxactun archeological site (Guatemala). Journal of Cultural Heritage. 2015;16:862–868.

    Google Scholar 

  63. Baglioni M, Raudino M, Berti D, Keiderling U, Bordes R, Holmberg K, Baglioni P. Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from contaminants. Soft Matter. 2014;10:6798–6809.

    CAS  Google Scholar 

  64. Grassi S, Favaro M, Tomasin P, Dei L. Nanocontainer aqueous systems for removing polymeric materials from marble surfaces: A new and promising tool in cultural heritage conservation. Journal of cultural heritage. 2009;10:3:347–355.

    Google Scholar 

  65. Tabasso ML, Simon S. Testing methods and criteria for the selection/evaluation of products for the conservation of porous building materials. Reviews in conservation. 2006;7:67–82.

    Google Scholar 

  66. Baglioni M, Alterini M, Chelazzi D, Giorgi R, Baglioni P. Removing polymeric coatings with nanostructured fluids: Influence of substrate, nature of the film, and application methodology. Front Mater. 2019;6:311. doi: https://doi.org/10.3389/fmats.2019.00311

  67. Stulik D, Miller D, Khanjian H, Khandekar N, Wolbers R, Carlson J, Petersen WC. Solvent gels for the cleaning of works of art: the residue question. Getty Publications. Research in Conservation by Stulik; 2004.

    Google Scholar 

  68. Mastrangelo R, Montis C, Bonelli N, Tempesti P, Baglioni P. Surface cleaning of artworks: Structure and dynamics of nanostructured fluids confined in polymeric hydrogel networks. Physical Chemistry Chemical Physics. 2017;19:35:23762–23772

    CAS  Google Scholar 

  69. Carretti E, Dei L. Gels as Cleaning Agents in Cultural Heritage Conservation. In: Weiss RG, Terech P, editors. Molecular Gels. Dordrecht: Springer;2006. https://doi.org/10.1007/1-4020-3689-2_28

    CrossRef  Google Scholar 

  70. Bonini M, Lenz S, Giorgi R, Baglioni P. Nanomagnetic sponges for the cleaning of works of art. Langmuir. 2007;23:17: 8681–8685.

    CAS  Google Scholar 

  71. Domingues JA, Bonelli N, Giorgi R, Fratini E, Gorel F, Baglioni P. Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir. 2013;29:8:2746–2755.

    CAS  Google Scholar 

  72. Riedo C, Caldera F, Poli T, et al. Poly(vinylalcohol)-borate hydrogels with improved features for the cleaning of cultural heritage surfaces. Herit Sci. 2015;3:23. https://doi.org/10.1186/s40494-015-0053-2

    CAS  CrossRef  Google Scholar 

  73. Sun M, Zou J, Zhang H, Zhang B. Measurement of reversible rate of conservation materials based on gel cleaning approach. Journal of Cultural Heritage. 2015;16:5:719–727. https://doi.org/10.1016/j.culher.2014.11.006

    CrossRef  Google Scholar 

  74. Boccalon E, Nocchetti M, Pica M, Romani A. Sterflinger K. Hydrogels: A ‘stepping stone’ towards new cleaning strategies for biodeteriorated surfaces. Journal of Cultural Heritage. 2021;47:1–11. https://doi.org/10.1016/j.culher.2020.07.008.

    CrossRef  Google Scholar 

  75. Voltolina S, Aibéo C, Cavallin T, Egel E, Favaro M, Kamenova V, Patelli A, Nodari I, Pavlov I, Pavlova I, Schalm O, Scopece P, Simon S, Storme P, Falzacappa Assessment of plasma torches as innovative tool for cleaning of historical stone materials, Journal of Cultural Heritage. 2016;2: 940–950, https://doi.org/10.1016/j.culher.2016.05.001.

    CrossRef  Google Scholar 

  76. Aibéo C, et al. EU-PANNA project: development of a portable plasma torch for cleaning multi surfaces and coating deposition. In Dahlin E, editor. 2nd European Workshop on Cultural Heritage Preservation, NILU – Norwegian Institute for Air Research. 2012; p.55–64.

    Google Scholar 

  77. Soffritti I, D’Accolti M, Lanzoni L, Volta A, Bisi M, Mazzacane S, Caselli E. The Potential Use of Microorganisms as Restorative Agents: An Update. Sustainability. 2019; 11(14):3853. https://doi.org/10.3390/su11143853

    CAS  CrossRef  Google Scholar 

  78. Webster A, May E. Bioremediation of Weathered-Building Stone Surfaces. Trends Biotechnol. 2006;24:255

    CAS  Google Scholar 

  79. Cappitelli F, Toniolo L, Sansonetti S, Gulotta D, Ranalli G, Zanardini E, Sorlini C. Advantages of Using Microbial Technology over Traditional Chemical Technology in Removal of Black Crusts from Stone Surfaces. Historical Monuments Applied and Environmental Microbiology. 2007; 73 (17):5671–5675. DOI: https://doi.org/10.1128/AEM.00394-07.

    CAS  CrossRef  Google Scholar 

  80. Troiano F, Gulotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Claudia Sorlini, Cappitelli F. Successful combination of chemical and biological treatments for the cleaning of stone artworks. International Biodeterioration & Biodegradation. 2013;85:294–304. https://doi.org/10.1016/j.ibiod.2013.08.011.

    CAS  CrossRef  Google Scholar 

  81. Bosch-Roig P, Lustrato G, Zanardini E, Ranalli G. Biocleaning of Cultural Heritage stone surfaces and frescoes: Which delivery system can be the most appropriate? Ann. Microbiol. 2015;65:1227–1241.

    Google Scholar 

  82. Romano I, Abbate M, Poli A, et al. Bio-cleaning of nitrate salt efflorescence on stone samples using extremophilic bacteria. Sci Rep. 2019;9:1668. https://doi.org/10.1038/s41598-018-38187-x

    CAS  CrossRef  Google Scholar 

  83. Valentini F, Diamanti A, Palleschi G. New bio-cleaning strategies on porous building materials affected by biodeterioration event. Applied Surface Science. 2010;256:22: 6550-6563. https://doi.org/10.1016/j.apsusc.2010.04.046.

    CAS  CrossRef  Google Scholar 

  84. Ďoubal J. Cleaning Stone – The Possibilities for an Objective Evaluation. In Hughes JJ and Howind T, editors. Proceeding of the 13th International Congress on the Deterioration and Conservation of Stone: Conservation. 2016;729–736.

    Google Scholar 

  85. Kapsalas P, Maravelaki-Kalaitzaki P, Zervakis M, Delegou ET, Moropoulou A. Optical inspection for quantification of decay on stone surfaces. NDT & E Inter. 2007;40:2–11.

    CAS  Google Scholar 

  86. Manganelli Del Fà R, Riminesi C, Tiano P. Monitoring of surface pattern of artistic and architectural artefacts by means of ultra-close range photogrammetry. In Nardini, editor. Proceeding of Kermes Quaderni ESRARC2014, 6th European Symposium on Religious Art, Restoration and Conservation. 2014;164–167. ISBN: 978-88-404-4365-2.

    Google Scholar 

  87. Fort R, Mingarro F, Lopez de Azcona MC, Rodriguez Blanco J. Chromatic parameters as performance indicators for stone cleaning techniques. Color Res Applic. 1999;25:442–6.

    Google Scholar 

  88. EN 15886: Conservation of cultural property – Test methods – Color measurement of surfaces. 2010.

    Google Scholar 

  89. Hauff G, Kozub P, D’ham G. Which cleaning method is the most appropriate one? A systematic approach to the assessment of cleaning test panels. In: Lukaszewicz JW, Niemcewicz P, editors. Proc. of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland. Torun, Poland:Nicolaus Copernicus University Press 2008;381–388.

    Google Scholar 

  90. Delegou ET, Ntoutsi I, Kiranoudis CT, Sayas J, Moropoulou A. Advanced and novel methodology for scientific support on decision-making for stone cleaning. In: Hosseini M, Karapanagiotis I, editors. Advanced Materials for the Conservation of Stone. Springer International Publishing AG. 2018;299–234. https://doi.org/10.1007/978-3-319-72260-3_14

    CrossRef  Google Scholar 

  91. EN 17488:2020. Conservation of cultural heritage – Procedure for the analytical evaluation and selection of cleaning methods for porous inorganic materials used in cultural heritage.

    Google Scholar 

  92. Vergés-Belmin V. Towards a definition of common evaluation criteria for the cleaning of porous building materials: a review. Science and Technology for Cultural Heritage. 1996;5(1):69–83.

    Google Scholar 

  93. Revez MJ, Delgado Rodrigues J. Incompatibility risk assessment procedure for the cleaning of built heritage. J Cult Herit. 2016;18:219–228.

    Google Scholar 

  94. Gaspar P, Hubbard C, McPhail D, Cummings A. A topographical assessment and comparison of conservation cleaning treatments. Journal of Cultural Heritage. 2003; 4, Suppl 1:294–302. https://doi.org/10.1016/S1296-2074(02)01211-6.

    CrossRef  Google Scholar 

  95. Iglesias M, Prada JL, Guasch N. Technique for cleaning Tarragona Miocene age dolomitized silty limestone, altered by urban pollution. Materiales de Construccion. 2008; 58(289–290):247–262.

    CAS  Google Scholar 

  96. Sanmartín P, Cappitelli F, Mitchell R. Current methods of graffiti removal: A review. Construction and Building Materials. 2014;71:363–374. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.093

    CrossRef  Google Scholar 

  97. Sun M, Zou J, Zhang H, Zhang B. Measurement of reversible rate of conservation materials based on gel cleaning approach. J. Cult. Heritage. 2015;16 (5): 719–727. DOI:https://doi.org/10.1016/j.culher.2014.11.006

    CrossRef  Google Scholar 

  98. Pozo-Antonio JS, A. Ramil, T. Rivas, A.J. López, M.P. Fiorucci Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite Constr. Build. Mater. 2016;112:682–690

    CAS  Google Scholar 

  99. Baglioni M, Poggi G, Benavides YJ, Martínez Camacho F, Giorgi R, Baglioni P. Nanostructured fluids for the removal of graffiti – A survey on 17 commercial spray-can paints. Journal of Cultural Heritage. 2018;34:218–226.

    Google Scholar 

  100. Musolino M, Aricò F, Tundo P. An innovative and sustainable approach to spray paint graffiti removal from Istrian stone through the silica sol-gel chemistry: A preliminary assessment. Journal of Cultural Heritage. 2019:36:268–274.

    Google Scholar 

  101. Zykubek K, Proudfoot T, Lithgow K, Carpenter D. Research on the selection of biocides for the ‘disinfection’ of statues and masonry at the National Trust (UK). Journal of the Institute of Conservation. 2020;43:3:225–241.

    Google Scholar 

  102. Ricci C, Gambino F, Nervo M, Piccirillo A, Scarcella A, Zenucchini F, Pozo-Antonio JS. Developing New Cleaning Strategies of Cultural Heritage Stones: Are Synergistic Combinations of a Low-Toxic Solvent Ternary Mixtures Followed by Laser the Solution? Coatings. 2020;10(5):466. https://doi.org/10.3390/coatings10050466

    CAS  Google Scholar 

  103. Baglioni M, Poggi G, Giorgi R, Rivella P, Ogura T, Baglioni P. Selective removal of over-paintings from “Street Art” using an environmentally friendly nanostructured fluid loaded in highly retentive hydrogels. Journal of Colloid and Interface Science. 2021. https://doi.org/10.1016/j.jcis.2021.03.054.

  104. Pozo-Antonio JS, Rocha CSA, Pereira MFC, et al. Evaluation of side effects of mechanical cleaning with an anionic detergent on granite cladding tiles. Environ Sci Pollut Res. 2021; 28:15173–15184. https://doi.org/10.1007/s11356-020-11733-9

    CAS  CrossRef  Google Scholar 

  105. http://snohetta.com/projects

  106. Nilsen, B. Maintenance Operations Management (MOM) Information for the project: The Oslo Opera House – Condition analysis and proposal for cleaning, protection and maintenance of exterior marble. s.l. : Betong Consult as, 04.11.15. doc 201501489 Operaen i Oslo – Utendørs marmor, rev. 02.

    Google Scholar 

  107. Gherardi F, Kapridaki C, Roveri M, Gulotta D, Maravelaki PN, Toniolo L. The deterioration of Apuan white marble in contemporary architectural context. J Cult Herit. 2019;35:297–306.

    Google Scholar 

  108. Maravelaki PN, Toniolo L, Gherardi F, Kapridaki C, Arabatzis I. The Oslo Opera House – Condition Analysis and Proposal for Cleaning, Protection and Maintenance of Exterior Marble. In: Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage. TMM_CH 2018. Communications in Computer and Information Science. Springer, Cham.2019: Springer International Publishing.

    Google Scholar 

Download references

Acknowledgments

Special thanks to Arcadia Ricerche srl and the Director Dr. Guido Driussi for the photos provided with the cleaning tests, as well as Adriana Eidsvik of the Statsbygg Oslo for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pagona Noni Maravelaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Maravelaki, P.N. (2022). Surface Cleaning: Implications from Choices & Future Perspectives. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_2

Download citation