Skip to main content

Preliminary Investigations, Condition Assessment, and Mapping of the Deterioration Patterns

  • 206 Accesses

Part of the Cultural Heritage Science book series (CUHESC)

Abstract

Although generally assumed as long-lasting and extremely stable materials, natural stones are subjected to complex and interconnected damaging actions over the prolonged exposure time usually associated with heritage sites. Therefore, evaluating and monitoring the state of conservation of the stone surfaces of the built heritage is integral to the design and management of appropriate and effective preservation strategies. This chapter provides a critical overview of different approaches for the condition assessments of the stone surfaces, by examining international standards, guidelines, and methodologies for the identification and mapping of the deterioration patterns. The application of theoretical frameworks to precisely describe and evaluate the actual complex field conditions requires multidisciplinary contributions and an appropriate and sustainable diagnostic support. Selected case studies are also presented to discuss objectives and challenges in applying condition assessment strategies to the long-term evaluation of past conservation treatments, to inform and design suitable conservation strategy for historic façades, and for the preservation of modern architecture.

Keywords

  • Stone conservation
  • Conditions assessment
  • Materials mapping
  • Decay mapping
  • Damage atlases

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82942-1_1
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82942-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15

Notes

  1. 1.

    CEN/TC 346/WG 3 – Porous inorganic materials constituting cultural heritage https://standards.cen.eu/dyn/www/f?p=CENWEB:7:0::::FSP_ORG_ID:411505&cs=11466D45DFEFF63DD425BA5D9657E4415

  2. 2.

    Here translated according to the most similar terms available in the ICOMOS glossary.

References

  1. Siegesmund S, Snethlage R. Stone in Architecture: Properties, Durability. Springer Berlin Heidelberg; 2011.

    CrossRef  Google Scholar 

  2. Steiger M, Charola AE, Sterflinger K. Weathering and deterioration. In: Siegesmund S, Snethlage R, editors. Stone in Architecture. 2011.

    Google Scholar 

  3. Basu S, Orr SA, Aktas YD. A Geological Perspective on Climate Change and Building Stone Deterioration in London: Implications for Urban Stone-Built Heritage Research and Management. Atmosphere. 2020;11(8):788.

    CAS  CrossRef  Google Scholar 

  4. Auras M, Beer S, Bundschuh P, Eichhorn J, Mach M, Scheuvens D, et al. Traffic-related immissions and their impact on historic buildings: implications from a pilot study at two German cities. Environmental Earth Sciences. 2013;69(4):1135–47. https://doi.org/10.1007/s12665-013-2276-4.

    CAS  CrossRef  Google Scholar 

  5. Fatorić S, Seekamp E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Climatic Change. 2017;142(1):227–54. https://doi.org/10.1007/s10584-017-1929-9.

    CrossRef  Google Scholar 

  6. Bonazza A, Maxwell I, Drdácký M, Vintzileo E, Hanus C. Safeguarding cultural heritage from natural and man-made disasters: a comparative analysis of risk management in the EU. Luxembourg: Publications Office. 2018.

    Google Scholar 

  7. Brimblecombe P. Refining climate change threats to heritage. Journal of the Institute of Conservation. 2014;37(2):85–93. https://doi.org/10.1080/19455224.2014.916226.

    CrossRef  Google Scholar 

  8. Carroll P, Aarrevaara E. Review of Potential Risk Factors of Cultural Heritage Sites and Initial Modelling for Adaptation to Climate Change. Geosciences. 2018;8(9):322.

    Google Scholar 

  9. CEN (2012). EN 16096. Conservation of cultural property – Condition survey and report of built cultural heritage. European Committee for Standardization.

    Google Scholar 

  10. Bruno S, Fatiguso F. Building conditions assessment of built heritage in historic building information modeling. International Journal of Sustainable Development and Planning 2018;13:36–48.

    CrossRef  Google Scholar 

  11. Ottoni F, Freddi F, Zerbi A. From “models” to “reality”, and return. Some reflections on the interaction between survey and interpretative methods for built heritage conservation. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2017;XLII-5/W1:457–65. https://doi.org/10.5194/isprs-archives-XLII-5-W1-457-2017.

  12. Russo M, Carnevali L, Russo V, Savastano D, Taddia Y. Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. International Journal of Architectural Heritage. 2019;13(4):549–68. https://doi.org/10.1080/15583058.2018.1440030.

    CrossRef  Google Scholar 

  13. Zhao C, Zhang Y, Wang C-C, Hou M, Li A. Recent progress in instrumental techniques for architectural heritage materials. Heritage Science. 2019;7(1):36. https://doi.org/10.1186/s40494-019-0280-z.

    CrossRef  Google Scholar 

  14. Matero FG. Managing Change: The Role of Documentation and Condition Survey at Mesaverde National Park. Journal of the American Institute for Conservation. 2003;42(1):39–58. https://doi.org/10.1179/019713603806112895.

    CrossRef  Google Scholar 

  15. ICOMOS. Principle for the analysis, conservation and structural restoration of architectural heritage. 2003.

    Google Scholar 

  16. Warke PA, Curran JM, Turkington AV, Smith BJ. Condition assessment for building stone conservation: a staging system approach. Building and Environment. 2003;38(9):1113–23. https://doi.org/10.1016/S0360-1323(03)00085-4.

  17. Smith BJ, Přikryl R. Diagnosing decay: the value of medical analogy in understanding the weathering of building stones. Geological Society, London, Special Publications. 2007;271(1):1–8. https://doi.org/10.1144/gsl.sp.2007.271.01.01.

    CAS  CrossRef  Google Scholar 

  18. Gulotta D, Toniolo L. Conservation of the Built Heritage: Pilot Site Approach to Design a Sustainable Process. Heritage. 2019;2(1):797–812.

    CrossRef  Google Scholar 

  19. Delgado Rodrigues J. Defining, mapping and assessing deterioration patterns in stone conservation projects. Journal of Cultural Heritage. 2015;16(3):267–75. https://doi.org/10.1016/j.culher.2014.06.007.

  20. CNR-ICR (1988). NorMaL 1/88. Alterazioni Macroscopiche dei Materiali Lapidei: lessico (Macroscopic alterations of stone: lexicon).

    Google Scholar 

  21. UNI-EN (2006). 11182. Cultural heritage. Natural and artificial stone. Description of the alteration. Terminology and definition.

    Google Scholar 

  22. Fitzner B, Heinrichs K, Kownatzki R. Verwitterungsformen an Natursteinbauwerken – Klassifizierung, Kartierung und Auswertung/Weathering forms at natural stone monuments – classification, mapping and evaluation. Restoration of Buildings and Monuments. 1997;3(2):105. https://doi.org/10.1515/rbm-1997-0204.

  23. Fitzner B, Heinrichs K. Damage diagnosis on stone monuments – weathering forms, damage categories and damage indices. 2001.

    Google Scholar 

  24. Fitzner B, Heinrichs K, Bouchardiere DL. Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Building and Environment. 2003;38(9):1089–103. https://doi.org/10.1016/S0360-1323(03)00086-6.

  25. Heinrichs K. Diagnosis of weathering damage on rock-cut monuments in Petra, Jordan. Environmental Geology. 2008;56(3):643–75. https://doi.org/10.1007/s00254-008-1358-1.

    CrossRef  Google Scholar 

  26. ICOMOS-ISCS: Illustrated glossary on stone deterioration patterns | ICOMOS-ISCS: Glossaire illustré sur les formes d’altération de la pierre. Paris: Monuments & Sites; 2008.

    Google Scholar 

  27. Stefani C, Brunetaud X, Janvier-Badosa S, Beck K, De Luca L, Al-Mukhtar M. Developing a toolkit for mapping and displaying stone alteration on a web-based documentation platform. Journal of Cultural Heritage. 2014;15(1):1–9. https://doi.org/10.1016/j.culher.2013.01.011.

  28. Al-Omari A, Brunetaud X, Beck K, Al-Mukhtar M. Preliminary digital health record of limestone walls in Al-Ziggurat, Al-Nimrud city, Iraq. Journal of Cultural Heritage. 2015;16(5):737–40. https://doi.org/10.1016/j.culher.2014.11.005.

  29. Theodoridou M, Török Á. In situ investigation of stone heritage sites for conservation purposes: a case study of the Székesfehérvár Ruin Garden in Hungary. Progress in Earth and Planetary Science. 2019;6(1):15. https://doi.org/10.1186/s40645-019-0268-z.

    CrossRef  Google Scholar 

  30. Akoglu KG, Kotoula E, Simon S. Combined use of ultrasonic pulse velocity (UPV) testing and digital technologies: A model for long-term condition monitoring memorials in historic Grove Street Cemetery, New Haven. Journal of Cultural Heritage. 2020;41:84–95. https://doi.org/10.1016/j.culher.2019.07.015.

    CrossRef  Google Scholar 

  31. Pozo-Antonio JS, Puente I, Pereira MFC, Rocha CSA. Quantification and mapping of deterioration patterns on granite surfaces by means of mobile LiDAR data. Measurement. 2019;140:227–36. https://doi.org/10.1016/j.measurement.2019.03.066.

  32. Sanmartín P, Sanjurjo-Sánchez J, Prieto B. Covering Layers on Granite Buildings of Northwestern Iberian Peninsula: When Observable Characteristics and Lab Characterization Do Not Match. Coatings. 2020;10(2):137.

    CrossRef  Google Scholar 

  33. Thornbush MJ, Viles HA. Photo-based decay mapping of replaced stone blocks on the boundary wall of Worcester College, Oxford. Geological Society, London, Special Publications. 2007;271(1):69–75. https://doi.org/10.1144/gsl.sp.2007.271.01.08.

    CrossRef  Google Scholar 

  34. Thornbush MJ. A Site-Specific Index Based on Weathering Forms Visible in Central Oxford, UK. Geosciences. 2012;2(4):277–97.

    CrossRef  Google Scholar 

  35. Inkpen RJ, Fontana D, Collier P. Mapping decay: integrating scales of weathering within a GIS. Earth Surface Processes and Landforms. 2001;26(8):885–900. https://doi.org/10.1002/esp.234.

    CrossRef  Google Scholar 

  36. Barazzetti L, Previtali M, Scaioni M. Procedures for Condition Mapping Using 360° Images. ISPRS International Journal of Geo-Information. 2020;9(1).

    Google Scholar 

  37. Galantucci RA, Fatiguso F. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. Journal of Cultural Heritage. 2019;36:51–62. https://doi.org/10.1016/j.culher.2018.09.014.

    CrossRef  Google Scholar 

  38. Hatir ME, Barstuğan M, İnce İ. Deep learning-based weathering type recognition in historical stone monuments. Journal of Cultural Heritage. 2020;45:193–203. https://doi.org/10.1016/j.culher.2020.04.008.

    CrossRef  Google Scholar 

  39. Valero E, Forster A, Bosché F, Hyslop E, Wilson L, Turmel A. Automated defect detection and classification in ashlar masonry walls using machine learning. Automation in Construction. 2019;106:102846. https://doi.org/10.1016/j.autcon.2019.102846.

    CrossRef  Google Scholar 

  40. Saltwiki-Contributors. “Home.” Retrieved from www.saltwiki.net/index.php?title=Home&oldid=7017.: (2020). Accessed 6 August 2020.

  41. EwaGlos. European Illustrated Glossary of Conservation Terms for Wall Paintings and Architectural Surfaces. Series of publications by the Hornemann Institute. Petersberg, Germany: Michael Imhof Verlag; 2015.

    Google Scholar 

  42. Toniolo L, Zerbi CM, Bugini R. Black layers on historical architecture. Environmental Science and Pollution Research. 2009;16(2):218–26. https://doi.org/10.1007/s11356-008-0046-8.

    CAS  CrossRef  Google Scholar 

  43. Nevin A, Spoto G, Anglos D. Laser spectroscopies for elemental and molecular analysis in art and archaeology. Applied Physics A. 2012;106(2):339–61. https://doi.org/10.1007/s00339-011-6699-z.

    CAS  CrossRef  Google Scholar 

  44. Avdelidis NP, Moropoulou A. Applications of infrared thermography for the investigation of historic structures. Journal of Cultural Heritage. 2004;5(1):119–27. https://doi.org/10.1016/j.culher.2003.07.002.

    CrossRef  Google Scholar 

  45. Ludwig N, Rosina E, Sansonetti A. Evaluation and monitoring of water diffusion into stone porous materials by means of innovative IR thermography techniques. Measurement. 2018;118:348–53. https://doi.org/10.1016/j.measurement.2017.09.002.

    CrossRef  Google Scholar 

  46. Delgado Rodrigues J, Ferreira Pinto AP. Laboratory and onsite study of barium hydroxide as a consolidant for high porosity limestones. Journal of Cultural Heritage. 2016;19:467–76. https://doi.org/10.1016/j.culher.2015.10.002.

    CrossRef  Google Scholar 

  47. Facio DS, Ordoñez JA, Gil MLA, Carrascosa LAM, Mosquera MJ. New Consolidant-Hydrophobic Treatment by Combining SiO2 Composite and Fluorinated Alkoxysilane: Application on Decayed Biocalcareous Stone from an 18th Century Cathedral. Coatings. 2018;8(5):170.

    CrossRef  Google Scholar 

  48. Hughes, JJ. Ineducable us: the applications and contexts of microscopy used for the characterisation of historic building materials. RILEM Technical Letters. 2017;2:136-144. https://doi.org/10.21809/rilemtechlett.2017.52.

  49. Doehne E. ESEM Applications: From Cultural Heritage Conservation to Nano-Behaviour. Microchimica Acta. 2006;155(1):45–50. https://doi.org/10.1007/s00604-006-0505-1.

    CAS  CrossRef  Google Scholar 

  50. Alessandrini G, Toniolo L, Sansonetti A, Terrani M, Cesana A. Geochemical characterization of an Italian dolostone: the “pietra d’Angera”. Journal of the “Comitato Nazionale per la Scienza e la Tecnologia dei Beni Culturali”. 1995;4(2):51–7.

    Google Scholar 

  51. Gulotta D, Bertoldi M, Bortolotto S, Fermo P, Piazzalunga A, Toniolo L. The Angera stone: a challenging conservation issue in the polluted environment of Milan (Italy). Environmental Earth Sciences. 2013;69(4):1085–94. https://doi.org/10.1007/s12665-012-2165-2.

    CrossRef  Google Scholar 

  52. Aa.Vv. La Ca’ Granda di Milano: l’intervento conservativo sul cortile richiniano. Snam – Amilcare Pizzi, Milano; 1993.

    Google Scholar 

  53. Baracchini C, Lanari P, Scopigno R, Tecchia F, Vecchi A. SICAR: geographic information system for the documentation of restoration analyses and intervention. Optical Metrology. SPIE; 2003.

    Google Scholar 

  54. Cassanelli R. Monza anno 1300. La Basilica di S. Giovanni Battista e la sua facciata. 1988.

    Google Scholar 

  55. Gulotta D, Villa F, Cappitelli F, Toniolo L. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Science of The Total Environment. 2018;639:1480–90. https://doi.org/10.1016/j.scitotenv.2018.05.277.

    CAS  CrossRef  Google Scholar 

  56. Barazzetta G. Sede e scuole della Società Umanitaria. Casabella 2007;750/751:10–5.

    Google Scholar 

  57. Lollini F, Redaelli E, Bertolini L. Corrosion assessment of reinforced concrete elements of Torre Velasca in Milan. Case Studies in Construction Materials. 2016;4:55–61. https://doi.org/10.1016/j.cscm.2015.12.005.

    CrossRef  Google Scholar 

  58. MacDonald S. Conserving concrete. Conservation Perspectives. The GCI Newsletter 2019;34(2):4–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gulotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gulotta, D., Toniolo, L. (2022). Preliminary Investigations, Condition Assessment, and Mapping of the Deterioration Patterns. In: Gherardi, F., Maravelaki, P.N. (eds) Conserving Stone Heritage. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-82942-1_1

Download citation