Skip to main content

Abstract

As the transport sector moves towards new technological alternatives that enable a significant reduction of greenhouse gases (GHG) produced during its operation stage, the complexity of the vehicles, their components, and supply chains increases. The current methodologies that quantify the potential environmental impact of these new technologies cannot effectively cope with this complexity, complicating the consideration of mitigation options within decision-making and engineering development activities. This chapter gives an overview of the current context of electromobility from an environmental perspective, while discussing for a change of paradigm in the application of current assessment methodologies. Finally, the outline and the context in which this research was developed are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A well-to-wheel (WTW) analysis considers all direct and indirect emissions throughout the life cycle of an energy carrier (e.g. fuel, electricity, etc.) from its production to its consumption in form of kinetic energy at the vehicle’s wheels. Alternative analyses are: i. tank-to-wheel (TTW), which considers the conversion from energy carriers into the kinetic energy required to move the vehicle, and ii. well-to-tank (WTT), which considers exclusively the production of the energy carriers (fuels, electricity, etc.).

References

  • Baitz M, Albrecht S, Brauner E et al (2013) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18:5–13. https://doi.org/10.1007/s11367-012-0476-x

    Article  Google Scholar 

  • Cerdas F, Andrew S, Thiede S, Herrmann C (2018a) Environmental aspects of the recycling of lithium-ion traction batteries. In: Lithorec, pp 267–288

    Google Scholar 

  • Cerdas F, Egede P, Herrmann C (2018b) LCA of electromobility. Life Cycle Assess 669–693. https://doi.org/10.1007/978-3-319-56475-3_27

  • Cerdas F, Titscher P, Bognar N et al (2018c) Exploring the effect of increased energy density on the environmental impacts of traction batteries: a comparison of energy optimized lithium-ion and lithium-sulfur batteries for mobility applications. Energies 11:150. https://doi.org/10.3390/en11010150

  • Dunn JB, Gaines L, Kelly JC et al (2015) The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ Sci 8:158–168. https://doi.org/10.1039/C4EE03029J

    Article  Google Scholar 

  • EC-JRC (2010) ILCD Handbook: framework and requirements for life cycle impact assessment models and indicators

    Google Scholar 

  • Ellingsen LA-WW, Majeau-Bettez G, Singh B et al (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18:113–124. https://doi.org/10.1111/jiec.12072

    Article  Google Scholar 

  • Ellingsen LAW, Hung CR, Strømman AH (2017) Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transp Res Part D Transp Environ 55:82–90. https://doi.org/10.1016/j.trd.2017.06.028

    Article  Google Scholar 

  • European Commission (2014) Directive 2006/66/EU on batteries and accumulators and waste batteries and accumulators

    Google Scholar 

  • Gemechu ED, Sonnemann G, Young SB (2017) Geopolitical-related supply risk assessment as a complement to environmental impact assessment: the case of electric vehicles. Int J Life Cycle Assess 22:31–39. https://doi.org/10.1007/s11367-015-0917-4

    Article  Google Scholar 

  • Hauschild MZ, Herrmann C, Kara S (2017) An integrated framework for life cycle engineering. Procedia CIRP 61:2–9. https://doi.org/10.1016/j.procir.2016.11.257

    Article  Google Scholar 

  • Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x

    Article  Google Scholar 

  • Hellweg S, Mila i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-) 344:1109–1113. https://doi.org/10.1126/science.1248361

  • Herrmann C (2010) Ganzheitliches life cycle management

    Google Scholar 

  • International Energy Agency (IEA) (2016) Global EV outlook 2016 beyond one million electric cars

    Google Scholar 

  • International Energy Agency (2019a) CO2 emissions from fuel combustion overview. Paris

    Google Scholar 

  • International Energy Agency (2019b) Global EV outlook 2019. Paris

    Google Scholar 

  • Kahhat R, Williams E (2012) Materials flow analysis of e-waste: domestic flows and exports of used computers from the United States. Resour Conserv Recycl 67:67–74. https://doi.org/10.1016/j.resconrec.2012.07.008

    Article  Google Scholar 

  • Karagulian F, Belis CA, Dora CFC et al (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087

    Article  Google Scholar 

  • Kwade A, Haselrieder W, Leithoff R et al (2018) Current status and challenges for automotive battery production technologies. Nat Energy 3:290–300. https://doi.org/10.1038/s41560-018-0130-3

    Article  Google Scholar 

  • McKinsey (2017) Electrifying insights: how automakers can drive electrified vehicle sales and profitability

    Google Scholar 

  • Michaelis S, Rahimzei E, Kampker A et al (2018) Roadmap Batterie-Produktionsmittel 2030. VDMA

    Google Scholar 

  • Nelson P, Gallagher KG, Bloom I, Dees DW (2017) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles chemical sciences and engineering division, second edition. Next Gener Energy Storage Conf 116. https://doi.org/10.3133/fs20143035

  • NPE (2016) Roadmap for an integrated cell and battery production in Germany 68

    Google Scholar 

  • Schmidt T, Buchert M, Schebek L (2016) Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries. Resour Conserv Recycl 112:107–122. https://doi.org/10.1016/j.resconrec.2016.04.017

    Article  Google Scholar 

  • Schmuch R, Wagner R, Hörpel G et al (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278. https://doi.org/10.1038/s41560-018-0107-2

    Article  Google Scholar 

  • Sims R, Schaeffer R, Creutzig F et al (2014) Transport. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickle T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 599–670

    Google Scholar 

  • Thomas J (2014) Drive cycle powertrain efficiencies and trends derived from EPA vehicle dynamometer results. SAE Int J Passeng Cars Mech Syst 7:1374–1384. https://doi.org/10.4271/2014-01-2562

    Article  Google Scholar 

  • UNFCCC (2015) Paris declaration on electro-mobility and climate change and call to action. 1

    Google Scholar 

  • Velten K (2008) Mathematical modeling and simulation. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Book  Google Scholar 

  • Volkswagen AG (2013) The e-mission. Electric mobility and the environment. Production

    Google Scholar 

  • Wolfram P, Lutsey N (2016) Electric vehicles: literature review of technology costs and carbon emissions. Int Counc Clean Transp 1–23. https://doi.org/10.13140/RG.2.1.2045.3364

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerdas, F. (2022). Background and Context. In: Integrated Computational Life Cycle Engineering for Traction Batteries. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-82934-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82934-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82933-9

  • Online ISBN: 978-3-030-82934-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics