Skip to main content

Hiatuses and Core Correlations

  • 87 Accesses

Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The study of six sediments cores from the Ioffe Drift area documented the reduced thickness and/or absence of biostratigraphic zones and the occurrence of several hiatuses. The multi-proxy biostratigraphic, magnetic susceptibility (MS), color reflectance and X-ray fluorescence (XRF) data from five of the six cores reported numerous long- and short-term stratigraphic gaps over the last ~3–4 Ma. The correlation of sediment records from the drift suggests that the most pronounced series of hiatuses, associated with enhanced Lower Circumpolar Deep Water (LCDW) flow intensity, occurred from 2.51/2.59 to ~1.9 Ma (i.e., the onset of the modern-type deep-water circulation in the South Atlantic). This interval of specific high-amplitude peaks representing abrupt changes in volume MS and chemical composition variation may well serve as a regional stratigraphic benchmark in future studies of deep-sea contourites. A temporary intensification of the LCDW flow, probably due to its increased production in the Antarctic, led to deep erosion, ultimately resulting in long-term hiatuses and hence contributing to the enormously compressed Upper Pliocene–Middle Pleistocene section of the drift. The interval from 1.47/1.6 to 0.81 Ma, embracing the Mid-Pleistocene Transition, contains the longest stratigraphic gaps, up to ~1 Ma in some cores. Comparison of the studied sediment records to DSDP Site 516 reveals the reduced thickness of all the recovered biostratigraphic zones and evidence of more frequent hiatuses in the Ioffe Drift than on the neighboring Rio Grande Rise, suggesting more vigorous contour currents in the former.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82871-4_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-82871-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Berger WH, Wefer G (1996) Expeditions into the past: paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin, pp 363–410

    CrossRef  Google Scholar 

  • Berggren WA, Aubry MP, Hamilton N (1983) Neogene magnetobiostratigraphy of deep-sea drilling project, site 516: Rio Grande Rise, South Atlantic. In: Barker PF, Carlson RL, Johnson DA (eds) Initial reports of deep-sea drilling project 72. Government Printing Office, Washington, U.S, pp 675–713

    Google Scholar 

  • Berggren WA, Hilgen FJ, Langereis CG et al (1995) Late Neogene chronology: new perspectives in high-resolution stratigraphy. Geol Soc Am Bull 107:1272–1287. https://doi.org/10.1130/0016-7606(1995)107%3c1272:LNCNPI%3e2.3.CO;2

    CrossRef  Google Scholar 

  • Bylinskaya ME, Golovina LA (2004) Correlation of the Pliocene-quaternary foraminiferal and nannofossil zonations in the North Atlantic. Stratigr Geol Correl 12(3):309–319 (in Russian with English trans)

    Google Scholar 

  • de Garidel-Thoron T, Rosenthal Y, Bassinot FC, Beaufort L (2005) Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433:294–298. https://doi.org/10.1038/nature03189

    CrossRef  Google Scholar 

  • Glasby GP (2006) Manganese: predominant role of nodules and crusts. In: Shulz HD, Zabel M (eds) Marine geochemistry. Springer, pp 371–427 https://doi.org/10.1007/3-540-32144-6_11

  • Hall IR, McCave IN, Shackleton NJ et al (2001) Intensified deep Pacific inflow and ventilation during Pleistocene glacial times. Nature 412:809–812. https://doi.org/10.1038/35090552

    CrossRef  Google Scholar 

  • Haug GH, Tiedemann R (1998) Stable carbon and oxygen isotope ratios of Cibicidoides wuellerstorfi, and CaCO3 and sand content of ODP Hole 165–999A. Pangaea. https://doi.org/10.1594/PANGAEA.789866

    CrossRef  Google Scholar 

  • Hill DJ, Bolton KP, Haywood AM (2017) Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance. Nat Commun 8:14376. https://doi.org/10.1038/ncomms14376

    CrossRef  Google Scholar 

  • Hodell DA, Venz K (1992) Toward a high-resolution stable isotopic record of the Southern Ocean during the Pliocene–Pleistocene (4.8–0.8MA). In: Kennett JP, Warnke DA (eds) The antarctic paleoenvironment: a perspective on global change part 1, vol 56 (Antarctic Research Series). American Geophysical Union, Washington DC, pp 265–310

    Google Scholar 

  • Ivanova E, Murdmaa I, Borisov DG et al (2016) Late Pliocene-Pleistocene stratigraphy and history of formation of the Ioffe calcareous contourite drift, Western South Atlantic. Mar Geol 372:17–30. https://doi.org/10.1016/j.margeo.2015.12.002

    CrossRef  Google Scholar 

  • Ivanova E, Borisov D, Dmitrenko O, Murdmaa I (2020) Hiatuses in the late Pliocene-Pleistocene stratigraphy of the Ioffe calcareous contourite drift, western South Atlantic. Mar Pet Geol 111:624–637. https://doi.org/10.1016/j.marpetgeo.2019.08.031

    CrossRef  Google Scholar 

  • Karas C, Nürnberg D, Bahr A et al (2017) Pliocene oceanic seaways and global climate. Nat Sci Rep 7:39842. https://doi.org/10.1038/srep39842

    CrossRef  Google Scholar 

  • Keigwin LD (1982) Isotope paleoceanography of the Caribbean and east Pacific: role of panama uplift in late Neogene time. Science 217:350–353

    CrossRef  Google Scholar 

  • Kennett JP, Watkins ND (1975) Deep-sea erosion and manganese nodule development in Southeast Indian Ocean. Science 188:1011–1101

    CrossRef  Google Scholar 

  • Kleiven HF, Hall IR, McCave IN et al (2011) Coupled deep-water flow and climate variability in the middle Pleistocene North Atlantic. Geology 39(4):343–346. https://doi.org/10.1130/G31651.1

    CrossRef  Google Scholar 

  • Lacasse CM, Santos RV, Dantas EL et al (2017) 87Sr/86Sr dating and preliminary interpretation of magnetic susceptibility logs of giant piston cores from the Rio Grande Rise in the South Atlantic. J S Am Earth Sci 80:244–254. https://doi.org/10.1016/j.jsames.2017.09.034

    CrossRef  Google Scholar 

  • Ledbetter MT, Ciesielski PF (1986) Post-miocene disconformities and paleoceanography in the Atlantic sector of the Southern Ocean. Palaeogeogr Palaeoclim Palaeoecol 52(3–4):185–194, 197–214

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. https://doi.org/10.1029/2004PA001071

  • McCave IN, Hall IR (2006) Size sorting in marine muds: processes, pitfalls, and prospects for paleoflow-speed proxies. Geochem Geophys Geosyst 7:Q10N05. https://doi.org/10.1029/2006GC001284

  • Nishimura A (1992) Sedimentation and hiatuses in the Central Pacific Basin: their relationship to manganese nodule formation. In: Keating DH, DolLon DR (eds) Geology and offshore mineral resources of the central Pacific Basin, Circum-Pacific Council for energy and mineral resources earth science series 14. Springer, New York

    Google Scholar 

  • Pautot M, Melguen M (1975) Deep bottom currents, sedimentary hiatuses and polymetallic nodules. In: I.D.O.E Workshop, 1975–09, pp 227–234

    Google Scholar 

  • Schmieder F, von Dobeneck T, Bleil U (2000) The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth Planet Sci Lett 179:539–549. https://doi.org/10.1016/S0012-821X(00)00143-6

    CrossRef  Google Scholar 

  • Schmieder F (2004) Magnetic signals in Plio–Pleistocene sediments of the South Atlantic: chronostratigraphic usability and paleoceanographic implications. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late quaternary: reconstruction of material budgets and current systems. Springer, pp 263–279

    Google Scholar 

  • Schmittner A, Sarnthein M, Kinkel H et al (2004) Global impact of the Panamanian Seaway closure. Eos 85:526. https://doi.org/10.1029/2004EO490010

    CrossRef  Google Scholar 

  • Shackleton NJ, Opdyke ND (1976) Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28–239, Late Pliocene to latest Pleistocene. Geol Soc Am Mem 145:449–464

    Google Scholar 

  • Stow DAV, Faugères J-C (2008) chapter 13. Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, 60. Elsevier, Amsterdam, pp 223–256. https://doi.org/10.1016/S0070-4571(08)10013-9

  • Turnau R, Ledbetter MT (1989) Deep circulation changes in the South Atlantic Ocean: response to initiation of northern hemisphere glaciation. Paleoceanography 4:565–583

    CrossRef  Google Scholar 

  • Vincent E, Berger WH (1982) Planktonic foraminifera and their use in paleoceanography. In: Emiliani C (ed) The Sea, vol 7. Wiley-Interscience, New York

    Google Scholar 

  • von Dobeneck T, Schmieder F (1999) Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super- and sub-Milankovitch bands. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples for the South Atlantic. Springer, Berlin Heidelberg, pp 601–633

    CrossRef  Google Scholar 

  • von Stackelberg U (1979) Sedimentation, hiatuses, and development of manganese nodules: VALDIVIA Site Va-13/2, Northern Central Pacific. In Bischoff JL, Piper DZ (eds) Marine geology and oceanography of the pacific manganese nodule province. Springer US, Boston, MA, pp 559–586. https://doi.org/10.1007/978-1-4684-3518-4_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ivanova, E., Borisov, D., Murdmaa, I. (2021). Hiatuses and Core Correlations. In: Murdmaa, I., Ivanova, E. (eds) The Ioffe Drift. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-82871-4_9

Download citation