Skip to main content

History of the Ioffe Drift

  • Chapter
  • First Online:

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The comprehensive analysis of a large dataset of seismic, lithological, geochemical and micropaleontological data has shed light on the Ioffe Drift’s origin and evolution. Although the drift’s prehistory still has blank spots, it is suggested that oceanographic processes may have affected the formation of this depositional body since its earliest stage. The drift’s formation probably began over the volcanic ridge in the Florianopolis Fracture Zone just after the ridge’s formation approximately 95–80 Ma ago. Variations in bottom-current intensity in response to regional and global paleoceanographic and paleoclimatic changes are most clearly imprinted in the seismic structure of the upper 80 m of drift deposits and in sediment records recovered by cores (down to 7 m below sea floor (mbsf)). The drift’s contourite formation underwent alternating phases of erosion caused by the intensification of bottom currents, probably followed by prevailing pelagic settling upon weakening of the bottom currents. The most thoroughly studied history of the Ioffe contourite drift, the Late Pliocene to Recent, was interrupted by multiple erosional hiatuses resulting from the activity of the Lower Circumpolar Deep Water (LCDW) bottom current during the intervals from 2.51/2.59 to 1.9 Ma and from 1.47/1.6 to 0.81 Ma. The numerous hiatuses that detached layers of calcareous contourites are an essential characteristic of the Ioffe Drift deposits, as well as layered sedimentary structures expressing effects of different bottom-currents velocities on the contourite deposition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JRL (1982) Sedimentary structures, their character and physical basis, vol 1. Elsevier Science

    Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58. https://doi.org/10.1016/j.palaeo.2008.04.021

    Article  Google Scholar 

  • Bard E, Arnold M, Duprat J et al (1987) Reconstruction of the last deglaciation: Deconvolved records of 5180 profiles, micropaleontological variations and accelerator mass spectrometric 14C dating. Clim Dyn 1:102–112

    Article  Google Scholar 

  • Barker PF, Carlson RL, Johnson DA, Party SS (1981) Deep-Sea Drilling Project Leg 72: Southwest Atlantic paleocirculation and Rio Grande Rise tectonics. Geol Soc Am Bull 92:294–309

    Article  Google Scholar 

  • Barker PF, Johnson DA, Carlson RL et al (1983a) Site 516: Rio Grande Rise. In: Initial reports of the deep-sea drilling project, 72. U.S. Government Printing Office

    Google Scholar 

  • Barker PF, Johnson DA, Carlson RL et al (1983) Site 518: West Flank, Rio Grande Rise. In: Barker PF, Johnson DA, Carlson RL (eds) Initial reports of the deep-sea drilling project, 72. Government Printing Office, Washington, U.S, pp 357–380

    Chapter  Google Scholar 

  • Berger WH, Piper DJW (1972) Planktonic foraminifera: differential settling, dissolution, and redeposition. Limnol Oceanogr 17:275–287. https://doi.org/10.4319/lo.1972.17.2.0275

    Article  Google Scholar 

  • Berger WH, Wefer G (1996) Expeditions into the past: paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin, pp 363–410

    Chapter  Google Scholar 

  • Biscaye PE, Eittreim SL (1977) Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Mar Geol 23:155–172. https://doi.org/10.1016/0025-3227(77)90087-1

    Article  Google Scholar 

  • Ciesielski PF, Grinstead GP (1986) Pliocene variations in the position of the Antarctic convergence in the southwest Atlantic. Paleoceanography 1(2):197–232. https://doi.org/10.1029/PA001i002p00197

    Article  Google Scholar 

  • de Garidel-Thoron T, Rosenthal Y, Bassinot FC, Beaufort L (2005) Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433:294–298. https://doi.org/10.1038/nature03189

    Article  Google Scholar 

  • Duplessy J-C, Roche M, Kageyama M (2007) The deep ocean during the last interglacial period. Science 316:89–91

    Article  Google Scholar 

  • Duplessy J-C, Shackleton N, Fairbanks R et al (1988) Deepwater source variation during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360

    Article  Google Scholar 

  • Esin NV (2003) Viscosity of suspension in gravity flows of sediments. Doklady Earth Sci 393(8):1086–1088 (English Translation)

    Google Scholar 

  • Esin NV, Murdmaa IO, Esin NI, Evsyukov YD (2018) Dynamics of slow suspension flows on the Black Sea abyssal plain. Quat Intern 465:54–62. www.elsevier.com/locate/quaint

  • Frey DI, Fomin VV, Tarakanov RY et al (2018) Bottom water flows in the Vema channel and over the Santos Plateau based on the field and numerical experiments. In: Velarde MG, Tarakanov RY, Marchenko AV (eds) The ocean in motion: circulation, waves, polar oceanography. Springer, Cham, pp 475–485

    Chapter  Google Scholar 

  • Hall IR, McCave IN, Shackleton NJ et al (2001) Intensified deep Pacific inflow and ventilation during Pleistocene glacial times. Nature 412:809–812. https://doi.org/10.1038/35090552

    Article  Google Scholar 

  • Hall IR, McCave IN, Zahn R et al (2003) Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: Reflections of East Antarctic Ice Sheet growth. Paleoceanography 18(2):1040. https://doi.org/10.1029/2002PA000817

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail P (1987) Chronology of fluctuating sea level since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Hasenfratz AP, Jaccard SL, Martínez-García A, Sigman DM, Hodell DA, Vance D, Bernasconi SM, Kleiven HF, Haumann FA, Haug GH (2019) The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science 363(6431):1080–1084. https://doi.org/10.1126/science.aat7067

    Article  Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676

    Article  Google Scholar 

  • Hodell DA, Kennett JP (1985) Miocene paleoceanography of the South Atlantic Ocean at 22, 16 and 8 Ma. In: Kennett JP (ed) The Miocene ocean. Geol Soc. Am Mem 163:197–236

    Google Scholar 

  • Hodell DA, Leonard KA et al (1983) Climatically induced changes in vertical water mass structure of the Vema Channel during the Pliocene: evidence from deep-sea drilling project Holes 516A, 517, and 518. In: Barker PF, Carlson RL, Johnson DA et al (eds) Initial reports of DSDP, Leg 72. U.S. Goverment Printing Office, Washington, pp 907–919

    Google Scholar 

  • Hodell DA, Venz KA (1992) Toward a high-resolution stable isotopic record of the Southern Ocean during the Pliocene–Pleistocene (4.8–0.8 Ma). In: Kennett JP, Warnke DA (eds) The Antarctic paleoenvironment: a perspective on global change, part 1, vol 56 (Antarctic Research Series). American Geophysical Union, Washington DC, pp 265–310

    Google Scholar 

  • Ivanova EV, Oskina NS, Blyum NS (1989) Migration of the world ocean climatic zones during the Neogene. Oceanology 29(2):249–255 (English translation)

    Google Scholar 

  • Ivanova EV (2009) The global thermohaline paleocirculation. Springer, Dordrecht

    Book  Google Scholar 

  • Ivanova E, Murdmaa I, Borisov D et al (2016) Late Pliocene-Pleistocene stratigraphy and history of formation of the Ioffe calcareous contourite drift, Western South Atlantic. Mar Geol 372:17–30. https://doi.org/10.1016/j.margeo.2015.12.002

    Article  Google Scholar 

  • Ivanova E, Borisov D, Dmitrenko O, Murdmaa I (2020) Hiatuses in the late Pliocene-Pleistocene stratigraphy of the Ioffe calcareous contourite drift, western South Atlantic. Mar Pet Geol 111:624–637. https://doi.org/10.1016/j.marpetgeo.2019.08.031

    Article  Google Scholar 

  • Jain S, Collins LS (2007) Trends in Caribbean paleoproductivity related to the Neogene closure of the Central American Seaway. Mar Micropaleontol 63:57–74

    Article  Google Scholar 

  • Karas C, Nürnberg D, Bahr A et al (2017) Pliocene oceanic seaways and global climate. Nat Sci Rep 7:39842. https://doi.org/10.1038/srep39842

    Article  Google Scholar 

  • Keigwin LD (1982) Isotope paleoceanography of the Caribbean and east Pacific: role of Panama uplift in late Neogene time. Science 217:350–353

    Article  Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice-Hall

    Google Scholar 

  • Kennett JP, Barker PF (1990) Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean drilling perspective. Proc ODP Sci Results 113:937–960

    Google Scholar 

  • Kleiven HF, Hall IR, McCave IN et al (2011) Coupled deep-water flow and climate variability in the middle Pleistocene North Atlantic. Geology 39(4):343–346. https://doi.org/10.1130/G31651.1

    Article  Google Scholar 

  • Krasheninnikov VA, Basov IA (1986) Cenozoic stratigraphy of the Southern Ocean. Nauka, Moscow (in Russian)

    Google Scholar 

  • Ledbetter MT (1979) Fluctuations of Antarctic bottom water velocity in the Vema Channel during the last 160,000 years. Mar Geol 33:71–89

    Article  Google Scholar 

  • Ledbetter MT (1984) Bottom-current speed in the Vema Channel recorded by particle-size of sediment fine-fraction. Mar Geol 58:137–149

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. https://doi.org/10.1029/2004PA001071

  • Lisitsin AP (1974) Sedimentation in oceans. Nauka, Moscow (in Russian)

    Google Scholar 

  • Lisitsin AP (1978) Processes of oceanic sedimentation. Nauka (in Russian), Moscow

    Google Scholar 

  • Loubere P, Moss K (1986) Late Pliocene climate change and the onset of northern hemispheric glaciation as recorded in the northeast Atlantic Ocean. Geol Soc Am Bull 97:818–828

    Article  Google Scholar 

  • Martín-Chivelet J, Fregenal-Martínez MA, Chacón B (2008) Traction structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology 60. Elsevier, Amsterdam pp 157–182

    Google Scholar 

  • McCave IN, Hall IR (2006) Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies. Geochem Geophys Geosyst 7:Q10N05. http://dx.doi.org/https://doi.org/10.1029/2006GC001284

  • McCave IN, Thornalley DJR, Hall IR (2017) Relation of sortable silt grain-size to deep-sea current speeds: calibration of the ‘mud current meter.’ Deep Sea Res Part I 127:1–12. https://doi.org/10.1016/j.dsr.2017.07.003

    Article  Google Scholar 

  • McManus JF, Francois R, Gherardi J-M et al (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837

    Article  Google Scholar 

  • Medina-Elizalde M, Lea DW (2005) The mid-Pleistocene transition in the tropical Pacific. Science 310(5750):1009–1012

    Article  Google Scholar 

  • Melguen M, Thiede J (1974) Facies distribution and dissolution depths of surface sediment components from the Vema channel and the Rio Grande rise (southwest Atlantic Ocean). Mar Geol 17:341–353. https://doi.org/10.1016/0025-3227(74)90096-6

    Article  Google Scholar 

  • Morozov EG, Demidov AN, Tarakanov RY, Zenk W (2010) Abyssal channels in the Atlantic Ocean. Springer, Netherlands

    Book  Google Scholar 

  • Müller RD, Roest WR, Royer J-Y et al (1997) Digital isochrons of the world’s ocean floor. J Geophys Res Solid Earth 102:3211–3214. https://doi.org/10.1029/96JB01781

    Article  Google Scholar 

  • Murdmaa IO (1987) Facies of the ocean. Nauka (in Russian), Moscow

    Google Scholar 

  • Nisancioglu KH, Raymo ME, Stone PH (2003) Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 18:1. https://doi.org/10.1029/2002PA000767

    Article  Google Scholar 

  • Ovsepyan EA, Ivanova EV (2019) Glacial-interglacial interplay of southern- and northern-origin deep waters in the São Paulo Plateau-Vema Channel area of the western South Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 514:349–360. https://doi.org/10.1016/j.palaeo.2018.10.031

    Article  Google Scholar 

  • Pfuhl HA, McCave IN, Schellenberg SA, Ferretti P (2004) Changes in Southern Ocean circulation in late Oligocene to early Miocene time. In: Exon NF, Kennett JP, Malone MJ (eds) Cenozoic paleoceanography and tectonics in the expanding Tasmanian seaway. American Geophysical Union, Geophysical Monograph

    Google Scholar 

  • Pfuhl HA, McCave IN (2005) Evidence for late Oligocene establishment of the Antarctic circumpolar current. Earth Planet. Science Letter 235:715–728

    Article  Google Scholar 

  • Prell WL (1985) The stability of low-Iatitude sea-surface temperatures: an evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. DOE Report TR025. U.S. Department of Energy, Washington, DC

    Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154. https://doi.org/10.1016/j.margeo.2014.03.011

    Article  Google Scholar 

  • Scher HD, Martin EE (2008) Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography 23:PA1205. https://doi.org/10.1029/2006PA001400

  • Schmittner A, Sarnthein M, Kinkel H et al (2004) Global impact of the Panamanian seaway closure. Eos 85:526. https://doi.org/10.1029/2004EO490010

    Article  Google Scholar 

  • Sexton PF, Wilson PA, Pearson PN (2006) Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty”. Geochem Geophys Geosyst 7

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277 and 281. In: Initial Reports. DSDP 29. Washington, pp 743–755

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1977) Oxygen isotope and palaeomagnetic evidence for early northern hemisphere glaciation. Nature 270:216–219. https://doi.org/10.1038/270216a0

    Article  Google Scholar 

  • Shor AN, Jones G, Rasmussen KA, Burckle LH (1983) Carbonate spikes and displaced components at Deep-Sea Drilling Project Site 515: Pliocene/Pleistocene depositional processes in the Southern Brazil Basin. In: Barker PF, Carlson RL, Johnson DA et al Initial Reports of DSDP, Leg 72. U.S. Goverment Printing Office, Washington, pp 885–893

    Google Scholar 

  • Stow DAV, Faugères J-C (2008) Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, chap 13 60. Elsevier, Amsterdam, pp 223–256

    Google Scholar 

  • Stow DAV, Smillie Z, Pan J, Esentia I (2019) Deep-sea contourites: sediments and cycles. In: Encyclopedia of ocean sciences. Elsevier, pp 111–120

    Google Scholar 

  • Thomas DJ, Via RK (2007) Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 22. https://doi.org/10.1029/2006PA001297

  • Thran AC, Dutkiewicza A, Spence P, Müller RD (2018) Controls on the global distribution of contourite drifts: insights from an eddy-resolving ocean model. Earth Planet Sci Lett 489:228–240. https://doi.org/10.1016/j.epsl.2018.02.044

    Article  Google Scholar 

  • Trauth MH, Sarnthein M, Arnold M (1997) Bioturbational mixing depth and carbon flux at the seafloor. Paleoceanography 12(3):517–526

    Google Scholar 

  • Turnau R, Ledbetter MT (1989) Deep circulation changes in the South Atlantic Ocean: response to initiation of Northern Hemisphere glaciation. Paleoceanography 4:565–583

    Article  Google Scholar 

  • Via RK, Thomas DJ (2006) Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34:441–444

    Article  Google Scholar 

  • Volbers ANA, Henrich R (2004) Calcium carbonate corrosiveness in the South Atlantic during the last glacial maximum as inferred from changes in the preservation of Globigerina bulloides: a proxy to determine deep-water circulation patterns? Mar Geol 204:43–57. https://doi.org/10.1016/S0025-3227(03)00372-4

    Article  Google Scholar 

  • Wetzel A, Werner F, Stow DAV (2008) Bioturbation and biogenic sedimentary structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, chap. 11 60. Elsevier, Amsterdam, pp 183–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murdmaa, I., Ivanova, E., Borisov, D. (2021). History of the Ioffe Drift. In: Murdmaa, I., Ivanova, E. (eds) The Ioffe Drift. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-82871-4_10

Download citation

Publish with us

Policies and ethics