Skip to main content

Implications of Inflammation in Aging and Age-Related Diseases

  • Chapter
  • First Online:
The Role of Antioxidants in Longevity and Age-Related Diseases

Abstract

Research evidence has indicated that increasing numbers of elderly are suffering from age-related diseases such as neurodegenerative disease, atherosclerosis, cancer, diabetes, and osteoporosis. These diseases are characterized by progressive loss of tissue and organ function. Substantial evidence has revealed that the overproduction of ROS may play a crucial role in the development of these diseases. Oxidative stress is regarded as an imbalance between antioxidant and prooxidant species and thus leads to cellular and molecular damage. ROS are produced within the biological system to mediate cellular processes, for instance, stressor response, inflammation, and cell survival. The elderly are vulnerable to oxidative stress due to a reduction in the efficiency of the endogenous antioxidant system. Despite ROS production may not be an essential factor for aging, they are more likely to aggravate age-related diseases development through interaction with mitochondria and oxidative damage. The exact molecular mode of actions of aging and age-related diseases linked to the disturbance of redox balance remains unclear. In this chapter, we discussed the role of inflammation in the pathological mechanisms of obesity, neurodegenerative disease, atherosclerosis, cancer, diabetes, and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Larijani B, Rahimi R et al (2005) Role of oxidative stress in osteoporosis. Therapy 2:787–796

    Article  Google Scholar 

  • Acharya A, Das I, Chandhok D et al (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxidative Med Cell Longev 3:23–34

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2012) Toxicological profile for cadmium; Agency for Toxic Substances and Disease Registry, Public Health Service. U.S. Department Of Health and Human Services, Atlanta, pp 1–487

    Google Scholar 

  • Agidigbi TS, Kim C (2019) Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci 20:3576

    Article  Google Scholar 

  • Ago T, Kitazono T, Ooboshi H et al (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233

    Google Scholar 

  • Agostinho P, Lopes JP, Velez Z et al (2008) Overactivation of calcineurin induced by amyloid-beta and prion proteins. Neurochem Int 52:1226–1233

    Article  Google Scholar 

  • Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A et al (2019) Contribution of angiogenesis to inflammation and cancer. Front Oncol 9:1399

    Article  Google Scholar 

  • Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) The mitochondrion. Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Allavena P, Sica A, Solinas G et al (2008) The inflammatory microenvironment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  Google Scholar 

  • Alp NJ, McAteer MA, Khoo J et al (2004) Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 24:445–450

    Article  Google Scholar 

  • Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  • Alzheimer’s disease international (2009) World Alzheimer Report, 2009, Executive Summary [R]. London

    Google Scholar 

  • American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69

    Article  Google Scholar 

  • Aminjan HH, Abtahi SR, Hazrati E et al (2019) Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci 232:116607

    Article  Google Scholar 

  • Andreou N-P, Legaki E, Gazouli M (2020) Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann Gastroenterol 33:125–133

    Google Scholar 

  • Arai M, Shibata Y, Pugdee K et al (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59:27–33

    Article  Google Scholar 

  • Araki E, Lipes MA, Patti M-E et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190

    Article  Google Scholar 

  • Aseervatham GS, Sivasudha T, Jeyadevi R et al (2013) Environmental factors and unhealthy lifestyle influence oxidative stress in humans–an overview. Environ Sci Pollut Res Int 20:4356–4369

    Article  Google Scholar 

  • Asghar A, Sheikh N (2017) Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol 315:18–26

    Article  Google Scholar 

  • Awasthi A, Matsunaga Y, Yamada T (2005) Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol 196:282–289

    Article  Google Scholar 

  • Baek KH, Oh KW, Lee WY et al (2010) Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 87:226–235

    Article  Google Scholar 

  • Bai X, Lu D, Bai J et al (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kB. Biochem Biophys Res Commun 314:197–207

    Article  Google Scholar 

  • Ballance WC, Qin EC, Chung HJ et al (2019) Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 217:119292

    Article  Google Scholar 

  • Barry-Lane PA, Patterson C, van der Merwe M et al (2001) p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108:1513–1522

    Article  Google Scholar 

  • Basatemur GL, Jørgensen HF, Clarke MCH et al (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 16:727–744

    Article  Google Scholar 

  • Battogtokh G, Choi YS, Kang DS et al (2018) Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 8:862–880

    Article  Google Scholar 

  • Bax BE, Alam AS, Banerji B et al (1992) Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun 183:1153–1158

    Article  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  Google Scholar 

  • Belambri SA, Rolas L, Raad H et al (2018) NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Investig 48:e12951

    Article  Google Scholar 

  • Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425

    Article  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  Google Scholar 

  • Blaser H, Dostert C, Mak TW et al (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26:249–261

    Article  Google Scholar 

  • Bomfim TR, Forny-Germano L, Sathler LB et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Investig 122:1339–1353

    Article  Google Scholar 

  • Bonaccorsi G, Piva I, Greco P et al (2018) Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss. Indian J Med Res 147:341–351

    Article  Google Scholar 

  • Bond ST, Kim J, Calkin AC et al (2019) The antioxidant moiety of MitoQ imparts minimal metabolic effects in adipose tissue of high fat fed mice. Front Physiol 10:543

    Article  Google Scholar 

  • Bonda DJ, Wang X, Perry G et al (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59:290–294

    Article  Google Scholar 

  • Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120

    Article  Google Scholar 

  • Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348

    Article  Google Scholar 

  • Branca JJV, Fiorillo C, Carrino D et al (2020) Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants 9:492

    Article  Google Scholar 

  • Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27

    Article  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  Google Scholar 

  • Buha A, Jugdaohsingh R, Matovic V et al (2019) Bone mineral health is sensitively related to environmental cadmium exposure-experimental and human data. Environ Res 176:108539

    Article  Google Scholar 

  • Bulat N, Widmann C (2009) Caspase substrates and neurodegenerative diseases. Brain Res Bull 80:251–267

    Article  Google Scholar 

  • Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174

    Article  Google Scholar 

  • Butterfield DA, Boyd-Kimball D (2005) The critical role of methionine 35 in Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta 1703:149–156

    Article  Google Scholar 

  • Canalis E (2008) Notch signaling in osteoblasts. Sci Signal 1:pe17

    Article  Google Scholar 

  • Carina V, Bella ED, Costa V et al (2020) Bone’s response to mechanical loading in aging and osteoporosis: molecular mechanisms. Calcif Tissue Int 107:301–318

    Article  Google Scholar 

  • Čejková S, Králová-Lesná I, Poledne R (2016) Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor Vasa 58:e419–e425

    Article  Google Scholar 

  • Cenini G, Lloret A, Cascella R (2019) Oxidative stress and mitochondrial damage in neurodegenerative diseases: from molecular mechanisms to targeted therapies. Oxidative Med Cell Longev 2019, Article ID 2105607, 18 pages

    Google Scholar 

  • Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:37

    Article  Google Scholar 

  • Cervellati C, Bonaccorsi G, Cremonini E et al (2014) Oxidative stress and bone resorption interplay as a possible trigger for postmenopausal osteoporosis. Biomed Res Int 2014, Article ID 569563, 8 pages

    Google Scholar 

  • Cesari M, Pahor M, Incalzi RA (2010) Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 28:e72–e91

    Article  Google Scholar 

  • Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22

    Article  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G et al (2020) The interplay among miRNAs, major cytokines, and cancer-related inflammation. Mol Ther Nucleic Acids 20:606–620

    Article  Google Scholar 

  • Chang J-F, Yeh Y-C, Ho C-T et al (2019) Targeting ROS and cPLA2/COX2 expressions ameliorated renal damage in obese mice with endotoxemia. Int J Mol Sci 20:4393

    Article  Google Scholar 

  • Chen Q, Wang Q, Zhu J et al (2018) Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 175:1279–1292

    Article  Google Scholar 

  • Chen X, Wang Z, Zhu G et al (2019) The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J Expo Sci Environ Epidemiol 29:435–443

    Article  Google Scholar 

  • Chistiakov DA, Shkurat TP, Melnichenko AA et al (2018) The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 50:121–127

    Article  Google Scholar 

  • Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10

    Article  Google Scholar 

  • Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20:2407

    Article  Google Scholar 

  • Comen EA, Bowman RL, Kleppe M (2018) Underlying causes and therapeutic targeting of the inflammatory tumor microenvironment. Front Cell Dev Biol 6:56

    Article  Google Scholar 

  • Corona C, Pensalfini A, Frazzini V et al (2011) New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis 2:e176

    Article  Google Scholar 

  • Cristalli DO, Arnal N, Marra FA et al (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314:48–56

    Article  Google Scholar 

  • Curtain CC, Ali F, Volitakis I et al (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473

    Article  Google Scholar 

  • Czech MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23:804–814

    Article  Google Scholar 

  • Daiber A, Chlopicki S (2020) Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: evidence for redox-based therapies. Free Radic Biol Med 157:15–37

    Article  Google Scholar 

  • Daiber A, Xia N, Steven S et al (2019) New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci 20:187

    Article  Google Scholar 

  • Darden AG, Ries WL, Wolf WC et al (1996) Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res 11:671–675

    Article  Google Scholar 

  • de Araújo AA, de Morais HB, de Medeiros CACX et al (2019) Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. J Appl Oral Sci 27:e20180211

    Article  Google Scholar 

  • de los Fayos Alonso IG, Liang H-C, Turner SD et al (2018) The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers 10:93

    Article  Google Scholar 

  • De Luca G, Calpona PR, Caponetti A et al (2001) Preliminary report: amino acid profile in platelets of diabetic patients. Metabolism 50:739–741

    Article  Google Scholar 

  • Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 4:61–76

    Article  Google Scholar 

  • Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cell 7:156

    Article  Google Scholar 

  • Di Meo S, Reed TT, Venditti P et al (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016, Article ID 1245049, 44 pages

    Google Scholar 

  • di Penta A, Moreno B, Reix S et al (2013) Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 8:e54722

    Article  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491

    Article  Google Scholar 

  • Ding L, Kang Y, Dai H-B et al (2019) Adipose afferent reflex is enhanced by TNFα in paraventricular nucleus through NADPH oxidase-dependent ROS generation in obesity-related hypertensive rats. J Transl Med 17:256

    Article  Google Scholar 

  • Douglas G, Bendall JK, Crabtree MJ et al (2012) Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE(-)/(-) mice. Cardiovasc Res 94:20–29

    Article  Google Scholar 

  • Drouin A, Thorin E (2009) Flow-induced dilation is mediated by Akt-dependent activation of endothelial nitric oxide synthase-derived hydrogen peroxide in mouse cerebral arteries. Stroke 40:1827–1833

    Article  Google Scholar 

  • Drouin A, Thorin-Trescases N, Hamel E et al (2007) Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse cerebral arteries. Cardiovasc Res 73:73–81

    Article  Google Scholar 

  • Drummond GR, Selemidis S, Griendling KK et al (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    Article  Google Scholar 

  • Eble J, de Rezende FF (2014) Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal 20:1977–1993

    Article  Google Scholar 

  • Eiró N, Vizoso FJ (2012) Inflammation and cancer. World J Gastrointest Surg 4:62–72

    Article  Google Scholar 

  • Eizirik DL, Pasquali L, Cnop M (2020) Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 16:349–362

    Article  Google Scholar 

  • El-Bassossy HM, Neamatallah T, Balamash KS et al (2018) Arginase overexpression and NADPH oxidase stimulation underlie impaired vasodilation induced by advanced glycation end products. Biochem Biophys Res Commun 499:992–997

    Article  Google Scholar 

  • Ellmark SH, Dusting GJ, Fui MN et al (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65:495–504

    Article  Google Scholar 

  • Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59

    Article  Google Scholar 

  • Eyvazi S, Vostakolaei MA, Dilmaghani A et al (2020) The oncogenic roles of bacterial infections in development of cancer. Microb Pathog 141:104019

    Article  Google Scholar 

  • Faienza MF, Ventura A, Marzano F et al (2013) Postmenopausal osteoporosis: the role of immune system cells. Clin Dev Immunol 2013, Article ID 575936, 6 pages

    Google Scholar 

  • Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919

    Article  Google Scholar 

  • Faria TO, Simões MR, Vassallo DV et al (2018) Xanthine oxidase activation modulates the endothelial (vascular) dysfunction related to HgCl2 exposure plus myocardial infarction in rats. Cardiovasc Toxicol 18:161–174

    Article  Google Scholar 

  • Ferreiro E, Oliveira CR, Pereira CM (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30:331–342

    Article  Google Scholar 

  • Fischer CP, Berntsen A, Perstrup LB et al (2006) Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 17:580–587

    Google Scholar 

  • Florencio-Silva R, da Silva Sasso GR, Sasso-Cerri E et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015, Article ID 421746, 17 pages

    Google Scholar 

  • Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    Article  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  Google Scholar 

  • Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735

    Article  Google Scholar 

  • Fraser JH, Helfrich MH, Wallace HM et al (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19:223–226

    Article  Google Scholar 

  • Frohnert BI, Sinaiko AR, Serrot FJ et al (2011) Increased adipose protein carbonylation in human obesity. Obesity 19:1735–1741

    Article  Google Scholar 

  • Fu L-Q, Du W-L, Cai M-H et al (2020) The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 353:104119

    Article  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  Google Scholar 

  • Galderisi A, Polidori D, Weiss R et al (2019) Lower insulin clearance parallels a reduced insulin sensitivity in obese youths and is associated with a decline in β-cell function over time. Diabetes 68:2074–2084

    Article  Google Scholar 

  • Garrett IR, Boyce BF, Oreffo RO et al (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  Google Scholar 

  • Gazendam RP, van de Geer A, Roos D et al (2016) How neutrophils kill fungi. Immunol Rev 273:299–311

    Article  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Google Scholar 

  • George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272

    Article  Google Scholar 

  • Giraldo E, Lloret A, Fuchsberger T et al (2014) Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877

    Article  Google Scholar 

  • Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–1273

    Article  Google Scholar 

  • Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  Google Scholar 

  • Goleva TN, Rogov AG, Korshunova GA et al (2019) SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion 49:206–216

    Article  Google Scholar 

  • Gosling J, Slaymaker S, Gu L et al (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Investig 103:773–778

    Article  Google Scholar 

  • Grabowski MM, Sankey EW, Ryan KJ et al (2021) Immune suppression in gliomas. J Neuro-Oncol 151:3–12

    Article  Google Scholar 

  • Guo S, Deng C-X (2018) Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci 14:2083–2093

    Article  Google Scholar 

  • Guo M, Hao M, Tang Y (2018) Relationships among serum IL-6, TNF-α, CRP and coronary artery lesion in patients with acute myocardial infarction. Int J Clin Exp Med 11:6987–6992

    Google Scholar 

  • Guzik TJ, Sadowski J, Guzik B et al (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339

    Article  Google Scholar 

  • Haendeler J, Eckers A, Lukosz M et al (2012) Endothelial NADPH oxidase 2: when does it matter in atherosclerosis? Cardiovasc Res 94:1–2

    Article  Google Scholar 

  • Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39:3–11

    Article  Google Scholar 

  • Hamilton A, Holscher C (2012) The effect of ageing on neurogenesis and oxidative stress in the APPswe/PS1deltaE9 mouse model of Alzheimer’s disease. Brain Res 1449:83–93

    Article  Google Scholar 

  • Heitzer T, Krohn K, Albers S et al (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia 43:1435–1438

    Article  Google Scholar 

  • Hemonnot A-L, Hua J, Ulmann L et al (2019) Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci 11:233

    Article  Google Scholar 

  • Henriksen EJ, Diamond-Stanic MK, Marchionne EM (2011) Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 51:993–999

    Article  Google Scholar 

  • Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  Google Scholar 

  • Herrington FD, Carmody RJ, Goodyear CS (2016) Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J Biomol Screen 21:223–242

    Article  Google Scholar 

  • Hienz SA, Paliwal S, Ivanovski S (2015) Mechanisms of bone resorption in periodontitis. J Immunol Res 2015, Article ID 615486, 10 pages

    Google Scholar 

  • Hodge JM, Collier FM, Pavlos NJ et al (2011) M-csf potently augments rankl-induced resorption activation in mature human osteoclasts. PLoS One 6:e21462

    Article  Google Scholar 

  • Hotamisligil GS, Peraldi P, Budavari A et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668

    Article  Google Scholar 

  • Hsich E, Segal BH, Pagano PJ et al (2000) Vascular effects following homozygous disruption of p47(phox): an essential component of NADPH oxidase. Circulation 101:1234–1236

    Article  Google Scholar 

  • Hsu TC, Young MR, Cmarik J et al (2000) Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28:1338–1348

    Article  Google Scholar 

  • Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2:231–237

    Article  Google Scholar 

  • Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522

    Article  Google Scholar 

  • Huong PT, Nguyen LT, Nguyen X-B et al (2019) The role of platelets in the tumor-microenvironment and the drug resistance of cancer cells. Cancers 11:240

    Article  Google Scholar 

  • Ilkun O, Boudina S (2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19:4806–4817

    Article  Google Scholar 

  • Ireland LV, Mielgo A (2018) Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol 6:131

    Article  Google Scholar 

  • Italiani P, Puxeddu I, Napoletano S et al (2018) Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression? J Neuroinflammation 15:342

    Article  Google Scholar 

  • Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437:7–11

    Article  Google Scholar 

  • Jain SS, Paglialunga S, Vigna C et al (2014) High-fat diet–induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 63:1907–1913

    Article  Google Scholar 

  • Ji M-X, Yu Q (2015) Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 1:9–13

    Google Scholar 

  • Johnson T, Zhao L, Manuel G et al (2019) Approaches to therapeutic angiogenesis for ischemic heart disease. J Mol Med 97:141–151

    Article  Google Scholar 

  • Judkins CP, Diep H, Broughton BR et al (2010) Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol 298:H24–H32

    Article  Google Scholar 

  • Kaisanlahti A, Glumoff T (2019) Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 75:1–10

    Article  Google Scholar 

  • Kamata H, Honda S-I, Maeda S et al (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  Google Scholar 

  • Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20:6008

    Article  Google Scholar 

  • Kern L, Mittenbühler MJ, Vesting AJ et al (2019) Obesity-induced TNFα and IL-6 signaling: the missing link between obesity and inflammation—driven liver and colorectal cancers. Cancers 11:24

    Article  Google Scholar 

  • Key LL, Ries WL, Taylor RG et al (1990) Oxygen-derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction. Bone 11:115–119

    Article  Google Scholar 

  • Key LL, Wolf WC, Guadberg CM et al (1994) Superoxide and bone resorption. Bone 5:431–436

    Google Scholar 

  • Kim B-J, Lee Y-S, Lee S-Y et al (2018) Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Invest 128:1429–1441

    Article  Google Scholar 

  • Kim K, Melough MM, Vance TM et al (2019) Dietary cadmium intake and sources in the US. Nutrients 11:2

    Article  Google Scholar 

  • Kim J-M, Lin C, Stavre Z et al (2020) Osteoblast-osteoclast communication and bone homeostasis. Cell 9:2073

    Article  Google Scholar 

  • Kirk EA, Dinauer MC, Rosen H et al (2000) Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler Thromb Vasc Biol 20:1529–1535

    Article  Google Scholar 

  • Komori T (2002) Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 87:1–8

    Article  Google Scholar 

  • Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  Google Scholar 

  • Kubota N, Tobe K, Terauchi Y et al (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia. Diabetes 49:1880–1889

    Article  Google Scholar 

  • Kubota T, Kubota N, Kumagai H et al (2011) Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 13:294–307

    Article  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  Google Scholar 

  • Lafontan M (2014) Adipose tissue and adipocyte dysregulation. Diabetes Metab 40:16–28

    Article  Google Scholar 

  • Landmesser U, Spiekermann S, Dikalov S et al (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078

    Article  Google Scholar 

  • Landmesser U, Spiekermann S, Preuss C et al (2007) Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 27:943–948

    Article  Google Scholar 

  • Lassegue B, Sorescu D, Szocs K et al (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894

    Article  Google Scholar 

  • Le A, Udupa S, Zhang C (2019) The metabolic interplay between cancer and other diseases. Trends Cancer 5:809–821

    Article  Google Scholar 

  • Lee CH, Lam KSL (2019) Obesity-induced insulin resistance and macrophage infiltration of the adipose tissue: a vicious cycle. J Diabetes Investig 10:29–31

    Article  Google Scholar 

  • Li H, Forstermann U (2013) Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol 13:161–167

    Article  Google Scholar 

  • Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237:208–219

    Article  Google Scholar 

  • Li J, Wang Q, Yang R et al (2017) BMI-1 mediates estrogen-deficiency–induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J Bone Miner Res 32:962–973

    Article  Google Scholar 

  • Li K, Chen S, Cai P et al (2020) MiRNA-483–5p is involved in the pathogenesis of osteoporosis by promoting osteoclast differentiation. Mol Cell Probes 49:101479

    Article  Google Scholar 

  • Lim KH (2019) Diverse misfolded conformational strains and cross-seeding of misfolded proteins implicated in neurodegenerative diseases. Front Mol Neurosci 12:158

    Article  Google Scholar 

  • Lim S, Park S (2014) Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 47:1–7

    Article  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  Google Scholar 

  • Lin T-h, Pajarinen J, Lu L et al (2017) NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv Protein Chem Struct Biol 107:117–154

    Article  Google Scholar 

  • Liu Z, Zhou T, Ziegler AC et al (2017a) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev 2017, Article ID 2525967, 11 pages

    Google Scholar 

  • Liu T, Zhang L, Joo D et al (2017b) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:e17023

    Article  Google Scholar 

  • Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38

    Article  Google Scholar 

  • Louis SF, Zahradka P (2010) Vascular smooth muscle cell motility: from migration to invasion. Exp Clin Cardiol 15:e75–e85

    Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  Google Scholar 

  • MacKellar J, Cushman SW, Periwal V (2010) Waves of adipose tissue growth in the genetically obese Zucker fatty rat. PLoS One 5:e8197

    Article  Google Scholar 

  • Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    Article  Google Scholar 

  • Madungwe NB, Zilberstein NF, Feng Y et al (2016) Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. Am J Cardiovasc Dis 6:93–108

    Google Scholar 

  • Magalingam KB, Radhakrishnan A, Ping NS et al (2018) Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int 2018, Article ID 3740461, 12 pages

    Google Scholar 

  • Malone JI, Hanna S, Saporta S et al (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9:531–539

    Article  Google Scholar 

  • Marchio P, Guerra-Ojeda S, Vila JM et al (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxidative Med Cell Longev 2019, Article ID 8563845, 32 pages

    Google Scholar 

  • Marseglia L, Manti S, D’Angelo G et al (2015) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400

    Article  Google Scholar 

  • Masschelin PM, Cox AR, Chernis N et al (2020) The impact of oxidative stress on adipose tissue energy balance. Front Physiol 10:1638

    Article  Google Scholar 

  • Mathew G, Hanson B (2009) Global burden of trauma: need for effective fracture therapies. Indian J Orthop 43:111–116

    Article  Google Scholar 

  • Matilla-Duenas A, Ashizawa T, Brice A et al (2014) Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum 13:269–302

    Article  Google Scholar 

  • Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:e330–e341

    Article  Google Scholar 

  • Matthews GM, Howarth GS, Butler RN (2006) Nutrient and antioxidant modulation of apoptosis in gastric and colon cancer cells. Cancer Biol Ther 5:569–572

    Article  Google Scholar 

  • Mazat J-P, Devin A, Ransac S (2020) Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 77:455–465

    Article  Google Scholar 

  • McCaddon A, Hudson P, Hill D et al (2003) Alzheimer’s disease and total plasma aminothiols. Biol Psychiatry 53:254–260

    Article  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL et al (2008) Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22:708–722

    Article  Google Scholar 

  • McGeer PL, McGeer EG (1999) Inflammation of the brain in Alzheimer’s disease: implications for therapy. J Leukoc Biol 65:409–415

    Article  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer? Cell Cycle 8:1168–1175

    Article  Google Scholar 

  • Miller AE, Hu P, Barker TH (2020) Feeling things out: bidirectional signaling of the Cell–ECM interface, implications in the mechanobiology of cell spreading, migration, proliferation, and differentiation. Adv Healthc Mater 9:1901445

    Article  Google Scholar 

  • Milutinović A, Šuput D, Zorc-Pleskovič R (2020) Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: an updated review. Bosn J Basic Med Sci 20:21–30

    Google Scholar 

  • Minamino T, Orimo M, Shimizu I et al (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087

    Article  Google Scholar 

  • Misumi I, Starmer J, Uchimura T et al (2019) Obesity expands a distinct population of T cells in adipose tissue and increases vulnerability to infection. Cell Rep 27:514–524

    Article  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  Google Scholar 

  • Molehin OR, Adefegha SA, Adeyanju AA (2020) Role of oxidative stress in the pathophysiology of type 2 diabetes and cardiovascular diseases. In: Maurya P, Dua K (eds) Role of oxidative stress in pathophysiology of diseases. Springer, Singapore, pp 277–297

    Chapter  Google Scholar 

  • Moore K, Sheedy F, Fisher E (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  Google Scholar 

  • Moriya J (2019) Critical roles of inflammation in atherosclerosis. J Cardiol 73:22–27

    Article  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I et al (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    Article  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  Google Scholar 

  • Nakamura T, Lipton SA (2010) Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies. Cell Calcium 47:190–197

    Article  Google Scholar 

  • Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  Google Scholar 

  • Newby AC, Zaltsman AB (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41:345–360

    Article  Google Scholar 

  • Newsholme P, Morgan D, Rebelato E et al (2009) Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52:2489–2498

    Article  Google Scholar 

  • Newsholme P, Cruzat V, Arfuso F et al (2014) Nutrient regulation of insulin secretion and action. J Endocrinol 221:R105–R120

    Article  Google Scholar 

  • Nguyen GT, Green ER, Mecsas J (2017) Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Insect Microbiol 7:373

    Article  Google Scholar 

  • Nizzari M, Thellung S, Corsaro A et al (2012) Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. J Toxicol 2012, Article ID 187297, 13 pages

    Google Scholar 

  • Nojiri H, Shimizu T, Funakoshi M et al (2006) Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 281:33789–33801

    Article  Google Scholar 

  • Odén A, McCloskey EV, Kanis JA et al (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26:2243–2248

    Article  Google Scholar 

  • Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    Article  Google Scholar 

  • Olusi S (2002) Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes Relat Metab Disord 26:1159–1164

    Article  Google Scholar 

  • Ormazabal V, Nair S, Elfeky O et al (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17:122

    Article  Google Scholar 

  • Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29:4766–4771

    Article  Google Scholar 

  • Pan Y, Hui X, Hoo RLC et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 129:834–849

    Article  Google Scholar 

  • Pant S, Deshmukh A, GuruMurthy GS et al (2014) Inflammation and atherosclerosis-revisited. J Cardiovasc Pharmacol Ther 19:170–178

    Article  Google Scholar 

  • Patetsios P, Song M, Shutze WP et al (2001) Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol 88:188–191

    Article  Google Scholar 

  • Patten DA, Germain M, Kelly MA et al (2010) Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis 20:S357–S367

    Article  Google Scholar 

  • Paulsen K, Tauber S, Dumrese C et al (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015, Article ID 538786, 18 pages

    Google Scholar 

  • Peto R, Parish SE, Gray RG (1977) There is no such thing as ageing, and cancer is not related to it. IARC Publ 58:23–53

    Google Scholar 

  • Piemonte E, Lazos J, Belardinelli P et al (2018) Oral cancer associated with chronic mechanical irritation of the oral mucosa. Med Oral Patol Oral Cir Bucal 23:e151–e160

    Google Scholar 

  • Pierangeli SS, Espinola RG, Liu X et al (2001) Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res 88:245–250

    Article  Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev 2017, Article ID 8416763, 13 pages

    Google Scholar 

  • Poprac P, Jomova K, Simunkova M et al (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    Article  Google Scholar 

  • Poret JM, Souza-Smith F, Marcell SJ et al (2018) High fat diet consumption differentially affects adipose tissue inflammation and adipocyte size in obesity-prone and obesity-resistant rats. Int J Obes 42:535–541

    Article  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. New Engl J Med 362:329–344

    Article  Google Scholar 

  • Quinn JJ, Jones MG, Okimoto RA et al (2021) Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371:eabc1944

    Article  Google Scholar 

  • Ramel D, Gayral S, Sarthou M-K et al (2019) Immune and smooth muscle cells interactions in atherosclerosis: how to target a breaking bad dialogue? Front Pharmacol 10:1276

    Article  Google Scholar 

  • Rea IM, Gibson DS, McGilligan V et al (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586

    Article  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    Article  Google Scholar 

  • Ren G, Zhao X, Zhang L et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328

    Article  Google Scholar 

  • Ries WL, Key LL, Rodriguiz R (1992) Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic. J Bone Miner Res 7:931–939

    Article  Google Scholar 

  • Rodríguez-Cerdeira C, Cordeiro-Rodríguez M, Carnero-Gregorio M et al (2019) Biomarkers of inflammation in obesity-psoriatic patients. Mediat Inflamm 2019, Article ID 7353420, 14 pages

    Google Scholar 

  • Rodriguiz RM, Key LL, Ries WL (1993) Combination macrophage-colony stimulating factor and interferon-γ administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr Res 33:382–389

    Google Scholar 

  • Rosales-Corral S, Tan DX, Manchester L et al (2015) Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. Oxidative Med Cell Longev 2015, Article ID 985845, 14 pages

    Google Scholar 

  • Russell AP, Gastaldi G, Bobbioni-Harsch E et al (2003) Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS Lett 551:104–106

    Article  Google Scholar 

  • Rutkovskiy A, Stensløkken K-O, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95–106

    Article  Google Scholar 

  • Saini V (2010) Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 1:68–75

    Article  Google Scholar 

  • Salaroglio IC, Mungo E, Gazzano E et al (2019) ERK is a pivotal player of chemo-immune-resistance in cancer. Int J Mol Sci 20:2505

    Article  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  Google Scholar 

  • Schroder K, Vecchione C, Jung O et al (2006) Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free Radic Biol Med 41:1353–1360

    Article  Google Scholar 

  • Serpillon S, Floyd BC, Gupte RS et al (2009) Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 297:H153–H162

    Article  Google Scholar 

  • Sesso HD, Christen WG, Bubes V et al (2012) Multivitamins in the prevention of cardiovascular disease in men: The Physicians’ Health Study II randomized controlled trial. JAMA 308:1751–1760

    Article  Google Scholar 

  • Sharma M, Boytard L, Hadi T et al (2020) Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep 10:5555

    Article  Google Scholar 

  • Shelat PB, Chalimoniuk M, Wang JH et al (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106:45–55

    Article  Google Scholar 

  • Shiva S (2010) Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 22:64

    Article  Google Scholar 

  • Siegfried G, Descarpentrie J, Evrard S et al (2020) Proprotein convertases: key players in inflammation-related malignancies and metastasis. Cancer Lett 473:50–61

    Article  Google Scholar 

  • Silvade HR, Khan NL, Wood NW (2000) The genetics of Parkinson’s disease. Curr Opin Genet Dev 10:292–298

    Article  Google Scholar 

  • Smith RAJ, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11:106–114

    Google Scholar 

  • Sözen T, Özışık L, Çalık Başaran N (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56

    Article  Google Scholar 

  • Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    Article  Google Scholar 

  • Stroes E, Kastelein J, Cosentino F et al (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    Article  Google Scholar 

  • Stuart CA, Howell ME, Cartwright BM et al (2014) Insulin resistance and muscle insulin receptor substrate-1 serine hyperphosphorylation. Physiol Rep 2:e12236

    Article  Google Scholar 

  • Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39

    Article  Google Scholar 

  • Surh Y-J (2008) NF-κB and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr 17:269–272

    Google Scholar 

  • Surmi BK, Hasty AH (2008) Macrophage infiltration into adipose tissue. Future Lipidol 3:545–556

    Article  Google Scholar 

  • Suvorava T, Nagy N, Pick S et al (2015) Impact of eNOS-dependent oxidative stress on endothelial function and neointima formation. Antioxid Redox Signal 23:711–723

    Article  Google Scholar 

  • Talbot K, Wang H-Y, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122:1316–1338

    Article  Google Scholar 

  • Tan BL, Norhaizan ME (2019) Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients 11:2579

    Article  Google Scholar 

  • Tan BL, Esa NM, Rahman HS et al (2014) Brewers’ rice induces apoptosis in azoxymethane-induced colon carcinogenesis in rats via suppression of cell proliferation and the Wnt signaling pathway. BMC Complement Altern Med 14:304

    Article  Google Scholar 

  • Tan BL, Norhaizan ME, Liew W-P-P (2018a) Nutrients and oxidative stress: friend or foe? Oxidative Med Cell Longev 2018, Article ID 9719584, 24 pages

    Google Scholar 

  • Tan BL, Norhaizan ME, Liew W-P-P et al (2018b) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162

    Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  Google Scholar 

  • Teleanu RI, Chircov C, Grumezescu AM et al (2020) Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 9:84

    Article  Google Scholar 

  • Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Med Cell Longev 2017, Article ID 4535194, 18 pages

    Google Scholar 

  • Unsal V, Dalkıran T, Çiçek M et al (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10:184–202

    Article  Google Scholar 

  • Vaquero EC, Edderkaoui M, Pandol SJ et al (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279:34643–34654

    Article  Google Scholar 

  • Varvel NH, Neher JJ, Bosch A et al (2016) Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A 113:E5665–E5674

    Article  Google Scholar 

  • Vaughan T, Reid DM, Morrison NA et al (2004) RUNX2 alleles associated with BMD in Scottish women; interaction of RUNX2 alleles with menopausal status and body mass index. Bone 34:1029–1036

    Article  Google Scholar 

  • Vial G, Dubouchaud H, Couturier K et al (2011) Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 54:348–356

    Article  Google Scholar 

  • Voigt A, Rahnefeld A, Kloetzel PM et al (2013) Cytokine-induced oxidative stress in cardiac inflammation and heart failure – how the ubiquitin proteasome system targets this vicious cycle. Front Physiol 4:42

    Article  Google Scholar 

  • Volobueva A, Grechko A, Yet S-F et al (2019) Changes in mitochondrial genome associated with predisposition to atherosclerosis and related disease. Biomol Ther 9:377

    Google Scholar 

  • Walle P, Takkunen M, Männistö V et al (2017) Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling. Nutr Diabetes 7:e285

    Article  Google Scholar 

  • Wang YC, McPherson K, Marsh T et al (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378:815–825

    Article  Google Scholar 

  • Wang WY, Tan MS, Yu JT et al (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:136

    Google Scholar 

  • Wang W, Cai Q, Zhou F et al (2018) Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction. Redox Biol 15:253–265

    Article  Google Scholar 

  • Wang F-T, Sun W, Zhang J-T et al (2019) Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer (Review). Oncol Lett 17:3055–3065

    Google Scholar 

  • Wegner AM, Haudenschild DR (2020) NADPH oxidases in bone and cartilage homeostasis and disease: a promising therapeutic target. J Orthop Res 38:2104–2112

    Article  Google Scholar 

  • Weitzmann MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica 2013, Article ID 125705, 29 pages

    Google Scholar 

  • Wezel A, van der Velden D, Maassen JM et al (2015) RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner. Atherosclerosis 238:132–139

    Article  Google Scholar 

  • White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711

    Article  Google Scholar 

  • White MF, Shoelson SE, Keutmann H et al (1988) A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 263:2969–2980

    Article  Google Scholar 

  • White CR, Darley-Usmar V, Berrington WR et al (1996) Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A 93:8745–8749

    Article  Google Scholar 

  • White RE, Gerrity R, Barman SA et al (2010) Estrogen and oxidative stress: a novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 75:788–793

    Article  Google Scholar 

  • Wiegman CH, Michaeloudes C, Haji G et al (2015) Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 136:769–780

    Article  Google Scholar 

  • Wiesolek HL, Bui TM, Lee JJ et al (2020) Intercellular adhesion molecule 1 functions as an efferocytosis receptor in inflammatory macrophages. Am J Pathol 190:P874–P885

    Article  Google Scholar 

  • Wohlfart P, Xu H, Endlich A et al (2008) Antiatherosclerotic effects of small-molecular-weight compounds enhancing endothelial nitric-oxide synthase (eNOS) expression and preventing eNOS uncoupling. J Pharmacol Exp Ther 325:370–379

    Article  Google Scholar 

  • World Health Organization (2017) Data and statistics. The challenge of obesity-quick statistics, 2017. http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/data-and-statistics

  • World Health Organization (2020a) Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 22 Feb 2020

  • World Health Organization (2020b) Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. Accessed 27 Feb 2020

  • World Health Organization (2020c) Cancer. https://www.who.int/health-topics/cancer#tab=tab_1. Accessed 28 Feb 2020

  • Wu M-Y, Li C-J, Hou M-F et al (2017) New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci 18:2034

    Article  Google Scholar 

  • Wu W-C, Wei J-N, Chen S-C et al (2020a) Progression of insulin resistance: a link between risk factors and the incidence of diabetes. Diabetes Res Clin Pract 161:108050

    Article  Google Scholar 

  • Wu W, Xiao Z, Chen Y et al (2020b) CD39 produced from human GMSCs regulates the balance of osteoclasts and osteoblasts through the Wnt/β-Catenin pathway in osteoporosis. Mol Ther 28:1518–1532

    Article  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432

    Article  Google Scholar 

  • Xia N, Daiber A, Habermeier A et al (2010) Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther 335:149–154

    Article  Google Scholar 

  • Xu H, Goettsch C, Xia N et al (2008) Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med 44:1656–1667

    Article  Google Scholar 

  • Xu W, Liu X, He X et al (2020) Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model. J Ethnopharmacol 261:112992

    Article  Google Scholar 

  • Yamaguchi T, Yamamoto Y, Yokota S et al (1998) Involvement of interleukin-6 in the elevation of plasma fibrinogen levels in lung cancer patients. Jpn J Clin Oncol 28:740–744

    Article  Google Scholar 

  • Yokoyama M, Hirata K (2007) Endothelial nitric oxide synthase uncoupling: is it a physiological mechanism of endothelium-dependent relaxation in cerebral artery? Cardiovasc Res 73:8–9

    Article  Google Scholar 

  • Yoshida Y, Maruyama M, Fujita T et al (1999) Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells. Am J Phys 276:L900–L908

    Google Scholar 

  • Yousefian M, Shakour N, Hosseinzadeh H et al (2019) The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 55:200–213

    Article  Google Scholar 

  • Yu JH, Kim H (2014) Oxidative stress and cytokines in the pathogenesis of pancreatic cancer. J Cancer Prev 19:97–102

    Article  Google Scholar 

  • Yu E, Calvert PA, Mercer JR et al (2013) Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 128:702–712

    Article  Google Scholar 

  • Zhang Y-B, Zhong Z-M, Hou G et al (2011) Involvement of oxidative stress in age-related bone loss. J Surg Res 169:e37–e42

    Article  Google Scholar 

  • Zhang P, Yin Y, Wang T et al (2020) Maresin 1 mitigates concanavalin A-induced acute liver injury in mice by inhibiting ROS-mediated activation of NF-κB signaling. Free Radic Biol Med 147:23–36

    Article  Google Scholar 

  • Zhao R-Z, Jiang S, Zhang L et al (2019a) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15

    Google Scholar 

  • Zhao Y-P, Wang F, Jiang W et al (2019b) A mitochondrion-targeting tanshinone IIA derivative attenuates myocardial hypoxia reoxygenation injury through a SDH-dependent antioxidant mechanism. J Drug Target 27:896–902

    Article  Google Scholar 

  • Zhou R, Cheng L, Dandekar AM (2006) Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. J Exp Bot 57:3647–3657

    Article  Google Scholar 

  • Zhou M, Li S, Pathak JL (2019) Pro-inflammatory cytokines and osteocytes. Curr Osteoporos Rep 17:97–104

    Article  Google Scholar 

  • Zhu S, Wei W, Liu Z et al (2018) Tanshinone-IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF-κB signaling pathway. Mol Med Rep 17:6969–6976

    Google Scholar 

  • Zuo L, Zhou T, Pannell BK et al (2015) Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta Physiol 214:329–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, B.L., Norhaizan, M.E. (2021). Implications of Inflammation in Aging and Age-Related Diseases. In: The Role of Antioxidants in Longevity and Age-Related Diseases . Springer, Cham. https://doi.org/10.1007/978-3-030-82859-2_5

Download citation

Publish with us

Policies and ethics