Skip to main content

Abstract

Decellularization technology is a process that uses different methods such as physical, chemical or enzymatic methods in order to eliminate cellular remnants from original tissues or organs while minimizing any adverse effect on the structural properties, biological activity, and mechanical integrity of the remaining ECM. Regenerative medicine uses the most promising therapies to replace or regenerate tissues and organs in human, restore or establish normal functions lost due to disease or injury. By the combination between new biomaterials and cells, one of the goals of regenerative medicine is to create autologous grafts for transplantation therapies in the future.

Various decellularization methods have been developed include chemical treatment, biological treatment and physical treatment. The aim of this chapter is to evaluate the decellularization method and all available materials that preserves the matrix without structural disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford AI, Kozloff KM, Hankenson KD (2015) Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 65:20–31

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal M, Bhagat S, Shukla D (2009) Bovine cancellous xenograft in the treatment of tibial plateau fractures in elderly patients. Int Orthop 33(3):779–784

    Article  CAS  PubMed  Google Scholar 

  • Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK (2012) Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 173(1):e11–e25

    Article  CAS  PubMed  Google Scholar 

  • Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31(3):169–176

    Article  CAS  PubMed  Google Scholar 

  • Bhumiratana S, Bernhard JC, Alfi D, Yeager K, Eton RE, Bova J, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8(343):343ra83–343ra83

    Google Scholar 

  • Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Rep 2

    Google Scholar 

  • Bracey D, Seyler T, Jinnah A, Lively M, Willey J, Smith T, Van Dyke M, Whitlock P (2018) A decellularized porcine xenograft-derived bone scaffold for clinical use as a bone graft substitute: a critical evaluation of processing and structure. J Funct Biomater 9(3):45

    Article  CAS  PubMed Central  Google Scholar 

  • Butler CR, Hynds RE, Crowley C, Gowers KH, Partington L, Hamilton NJ, Carvalho C, Platé M, Samuel ER, Burns AJ (2017) Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials 124:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Guirado JL, Gómez-Moreno G, Guardia J, Ortiz-Ruiz A, Piatelli A, Barone A, Martínez-González JM, Meseguer-Olmo L, López-Marí L, Dorado CB (2012) Biological response to porcine xenograft implants: an experimental study in rabbits. Implant Dent 21(2):112–117

    Article  PubMed  Google Scholar 

  • Chan LK, Leung VY, Tam V, Lu WW, Sze K, Cheung KM (2013) Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomater 9(2):5262–5272

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Dong C, Yang L, Lv Y (2015) 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces 7(29):15790–15802

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Lv Y (2017) Decellularized bone matrix scaffold for bone regeneration

    Google Scholar 

  • Chen Q, Yang Z, Sun S, Huang H, Sun X, Wang Z, Zhang Y, Zhang B (2010) Adipose-derived stem cells modified genetically in vivo promote reconstruction of bone defects. Cytotherapy 12(6):831–840

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Bloemen V, Impens S, Moesen M, Luyten FP, Schrooten J (2011) Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering. Tissue Eng Part C Methods 17(12):1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, Bierling P, Hernigou P, Layrolle P, Rouard H (2010) Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 31(2):270–278

    Article  CAS  PubMed  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta H, Ng W, Walker J, Tuck S, Varanasi S (2008) The cell biology of bone metabolism. J Clin Pathol 61(5):577–587

    Article  CAS  PubMed  Google Scholar 

  • Demazeau G, Rivalain N (2011) The development of high hydrostatic pressure processes as an alternative to other pathogen reduction methods. J Appl Microbiol 110(6):1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  • Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86(1):77–91

    Article  PubMed  Google Scholar 

  • Dunne LW, Huang Z, Meng W, Fan X, Zhang N, Zhang Q, An Z (2014) Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 35(18):4940–4949

    Article  CAS  PubMed  Google Scholar 

  • Elliot RR, Richards RH (2011) Failed operative treatment in two cases of pseudarthrosis of the clavicle using internal fixation and bovine cancellous xenograft (Tutobone). J Pediatr Orthopaedics B 20(5):349–353

    Article  Google Scholar 

  • Feng W, Fu L, Liu J, Li D (2012) The expression and distribution of xenogeneic targeted antigens on porcine bone tissue. In: Transplantation proceedings. Elsevier

    Google Scholar 

  • Fu R-H, Wang Y-C, Liu S-P, Shih T-R, Lin H-L, Chen Y-M, Sung J-H, Lu C-H, Wei J-R, Wang Z-W (2014) Decellularization and recellularization technologies in tissue engineering. Cell Transplant 23(4–5):621–630

    Article  PubMed  Google Scholar 

  • Gardin, C., Ricci, S., Ferroni, L., Guazzo, R., Sbricoli, L., De Benedictis, G., Finotti, L., Isola, M., Bressan, E., and Zavan, B. (2015). Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures, PloS one, 10(7), p. e0132344.

    Google Scholar 

  • Gerhardt LC, Widdows KL, Erol MM, Nandakumar A, Roqan IS, Ansari T, Boccaccini AR (2013) Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res Part A 101(3):827–841

    Article  CAS  Google Scholar 

  • Gilbert TW (2012) Strategies for tissue and organ decellularization. J Cell Biochem 113(7):2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  PubMed  Google Scholar 

  • Gock H, Murray-Segal L, Salvaris E, Cowan P, d’Apice AJ (2004) Allogeneic sensitization is more effective than xenogeneic sensitization in eliciting gal-mediated skin graft rejection1. Transplantation 77(5):751–753

    Article  PubMed  Google Scholar 

  • Godbey W, Hindy BS, Sherman ME, Atala A (2004) A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 25(14):2799–2805

    Article  CAS  PubMed  Google Scholar 

  • Grayson WL, Bhumiratana S, Cannizzaro C, Chao P-HG, Lennon DP, Caplan AI, Vunjak-Novakovic G (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 14(11):1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guruswamy Damodaran R, Vermette P (2018) Tissue and organ decellularization in regenerative medicine. Biotechnol Prog 34(6):1494–1505

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Miwa M, Sakai Y, Niikura T, Lee S, Oe K, Iwakura T, Kurosaka M, Komori T (2010) Efficient cell-seeding into scaffolds improves bone formation. J Dent Res 89(8):854–859

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Funamoto S, Kimura T, Nam K, Fujisato T, Kishida A (2011) The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32(29):7060–7067

    Article  CAS  PubMed  Google Scholar 

  • Hesse E, Kluge G, Atfi A, Correa D, Haasper C, Berding G, Shin H-O, Viering J, Länger F, Vogt PM (2010) Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone 46(5):1457–1463

    Article  PubMed  Google Scholar 

  • Jackson D, Grood E, Wilcox P, Butler D, Simon T, Holden J (1988) The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts: An experimental study in goats. Am J Sports Med 16(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT (2010) Chitosan–poly (lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater 6(9):3457–3470

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Vangipuram G, Fisher MB, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo SLY (2011) The effects of multiple freeze–thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J Orthop Res 29(8):1193–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Karalashvili L, Chichua N, Menabde G, Atskvereli L, Grdzelidze T (2017) Decellularized bovine bone graft for zygomatic bone reconstruction. Med Case Rep 4(1):52

    Google Scholar 

  • Kheir E, Stapleton T, Shaw D, Jin Z, Fisher J, Ingham E (2011) Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res Part A 99(2):283–294

    Article  CAS  Google Scholar 

  • Kim SH, Shin JW, Park SA, Kim YK, Park MS, Mok JM, Yang WI, Lee JW (2004) Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J Biomed Mater Res Part B Appl Biomater Offic J Soc Biomater Japan Soc Biomater Australian Soc Biomater Korean Soc Biomater 68(1):69–74

    Google Scholar 

  • Ledford CK, Nunley JA, Viens NA, Lark RK (2013) Bovine xenograft failures in pediatric foot reconstructive surgery. J Pediatric Orthopaedics 33(4):458–463

    Article  Google Scholar 

  • Lee DJ, Diachina S, Lee YT, Zhao L, Zou R, Tang N, Han H, Chen X, Ko C-C (2016) Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng 7:2041731416680306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Zhu Z-J, Li P, He Y-L (2013) Creation of a female rabbit model for intrauterine adhesions using mechanical and infectious injury. J Surgical Res 183(1):296–303

    Google Scholar 

  • López-Pérez PM, Da Silva RM, Sousa RA, Pashkuleva I, Reis RL (2010) Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: an in vitro study. Acta Biomater 6(9):3704–3712

    Article  PubMed  CAS  Google Scholar 

  • Lumpkins SB, Pierre N, McFetridge PS (2008) A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 4(4):808–816

    Article  PubMed  Google Scholar 

  • Luo F, Hou T-Y, Zhang Z-H, Xie Z, Wu X-H, Xu J-Z (2013) Effects of initial cell density and hydrodynamic culture on osteogenic activity of tissue-engineered bone grafts. PLoS One 8(1):e53697

    Google Scholar 

  • Luo L, Eswaramoorthy R, Mulhall KJ, Kelly DJ (2016) Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. J Mech Behav Biomed Mater 55:21–31

    Article  CAS  Google Scholar 

  • Ma J, Both SK, Yang F, Cui F-Z, Pan J, Meijer GJ, Jansen JA, van den Beucken JJ (2014) Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 3(1):98–107

    Article  CAS  PubMed  Google Scholar 

  • Manbachi A, Shrivastava S, Cioffi M, Chung BG, Moretti M, Demirci U, Yliperttula M, Khademhosseini A (2008) Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels. Lab Chip 8(5):747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour A, Mezour MA, Badran Z, Tamimi F (2017) Extracellular matrices for bone regeneration: a literature review. Tissue Eng Part A 23(23–24):1436–1451

    Article  PubMed  Google Scholar 

  • Marcos-Campos I, Marolt D, Petridis P, Bhumiratana S, Schmidt D, Vunjak-Novakovic G (2012) Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials 33(33):8329–8342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, Spitalnik PF, Grayson WL, Vunjak-Novakovic G (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci 109(22):8705–8709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza G, Rombouts K, Hall AR, Urbani L, Luong TV, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milan J-L, Planell JA, Lacroix D (2009) Computational modelling of the mechanical environment of osteogenesis within a polylactic acid–calcium phosphate glass scaffold. Biomaterials 30(25):4219–4226

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Kimura T, Kishida A (2016) Overview of the development, applications, and future perspectives of decellularized tissues and organs. ACS Biomater Sci Eng 3(7):1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Naoko Nakamura SF, Hashimoto Y, Nam K, Kimura T, Fujisato T, Iwata H, Kishida A Evaluation of decellularized bone using high-hydrostatic pressure in TERMIS

    Google Scholar 

  • Ng R, Gurm JS, Yang ST (2010) Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnol Prog 26(1):239–245

    Article  CAS  PubMed  Google Scholar 

  • Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LV, Navajas D, Farré R (2014) Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res Part A Offic J Soc Biomater Japan Soc Biomater Australian Soc Biomater Korean Soc Biomater 102(2):413–419

    Google Scholar 

  • Orlando G, Booth C, Wang Z, Totonelli G, Ross CL, Moran E, Salvatori M, Maghsoudlou P, Turmaine M, Delario G (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925

    Article  CAS  PubMed  Google Scholar 

  • Pathak R, Tiwari A, Kurade N, Nath A (2012) Decellularization of buffalo bone to prepare bone scaffolds for effective bone tissue engineering. J Cell Tissue Res 12(3)

    Google Scholar 

  • Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D (2011) The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 32(31):7870–7882

    Article  CAS  PubMed  Google Scholar 

  • Qiang Y, Jiang P, Lu S-B, Guo Q-Y, Bin Z, Zhang L, Wang A-Y, Xu W-J, Qun X, Hu Y-C (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chinese Med J 124(23):3930–3938

    Google Scholar 

  • Quan TM, Vu DN, My NTN, Ha TLB (2014) Decellularization of xenogenic bone grafts for potential use as tissue engineering scaffolds. Int J Life Sci Med Res 4(4):38

    Google Scholar 

  • Rashmi RP, Amarpal H (2017) Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix. Veterinary World 10(2):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Research, G.V. (2018) Bone grafts and substitutes market size, share & trends analysis report by material type (Natural, Synthetic), by application type (Spinal Fusion, Craniomaxillofacial, Long Bone), by region, and segment forecasts, 2018–2025

    Google Scholar 

  • Rieder E, Kasimir M-T, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127(2):399–405

    Article  PubMed  Google Scholar 

  • Robertson MJ, Soibam B, O’Leary JG, Sampaio LC, Taylor DA (2018) Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. PloS One 13(1):e0191892

    Google Scholar 

  • Roh JD, Nelson GN, Udelsman BV, Brennan MP, Lockhart B, Fong PM, Lopez-Soler RI, Saltzman WM, Breuer CK (2007) Centrifugal seeding increases seeding efficiency and cellular distribution of bone marrow stromal cells in porous biodegradable scaffolds. Tissue Eng 13(11):2743–2749

    Article  CAS  PubMed  Google Scholar 

  • Sánchez PL, Fernández-Santos ME, Costanza S, Climent AM, Moscoso I, Gonzalez-Nicolas MA, Sanz-Ruiz R, Rodríguez H, Kren SM, Garrido G (2015) Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 61:279–289

    Article  PubMed  CAS  Google Scholar 

  • Sawkins M, Bowen W, Dhadda P, Markides H, Sidney L, Taylor A, Rose F, Badylak S, Shakesheff K, White L (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9(8):7865–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD (2010) The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31(32):8426–8435

    Article  CAS  PubMed  Google Scholar 

  • Sladkova M, Cheng J, Palmer M, Chen S, Lin C, Xia W, Yu YE, Zhou B, Engqvist H, de Peppo GM (2018) Comparison of decellularized cow and human bone for engineering bone grafts with human induced pluripotent stem cells. Tissue Eng Part A

    Google Scholar 

  • Sun X-J, Peng W, Yang Z-L, Ren M-L, Zhang S-C, Zhang W-G, Zhang L-Y, Xiao K, Wang Z-G, Zhang B (2011) Heparin-chitosan-coated acellular bone matrix enhances perfusion of blood and vascularization in bone tissue engineering scaffolds. Tissue Eng Part A 17(19–20):2369–2378

    Article  CAS  PubMed  Google Scholar 

  • Tamilmahan P (2013) Development of acellular osseous xenograft for bone tissue engineering in rabbits. MV Sc. Izatnagar: Thesis Submitted to Indian Veterinary Research Institute

    Google Scholar 

  • Thevenot P, Nair A, Dey J, Yang J, Tang L (2008) Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 14(4):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, Painter C, Mirensky T, Erickson B, Shinoka T (2010) Cell-seeding techniques in vascular tissue engineering. Tissue Eng Part B Rev 16(3):341–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinand C, Xu JW, Peretti GM, Bonassar LJ, Gill TJ (2009) Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. J Biomed Mater Res B Appl Biomater 91(1):80–87

    Article  PubMed  CAS  Google Scholar 

  • Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 26(35):7339–7349

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Chen X, Zhu T, Hu J-J, Song H-X, Shen W-L, Jiang L-Y, Heng BC, Ji J-F, Ouyang H-W (2013) The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater 9(12):9317–9329

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhou M, Zhang Y, Wang X, Ma S, Dong L, Yang T, Ma L, Li B (2014) Porcine bone grafts defatted by lipase: efficacy of defatting and assessment of cytocompatibility. Cell Tissue Banking 15(3):357–367

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-Z, Jiang D, Wang S-J, Qi Y-S, Zhang J-Y, Yu J-K (2015) Potential of centrifugal seeding method in improving cells distribution and proliferation on demineralized cancellous bone scaffolds for tissue-engineered meniscus. ACS Appl Mater Interfaces 7(28):15294–15302

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Weir MD, Xu HH (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31(25):6502–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Le Bao Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, H.L.B., Doan, V.N., To, Q.M., Nguyen, M.T.N., Trinh, V.N.L., Le, T.T.V. (2021). Decellularization of Bone Tissue. In: Kajbafzadeh, AM. (eds) Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1345. Springer, Cham. https://doi.org/10.1007/978-3-030-82735-9_18

Download citation

Publish with us

Policies and ethics