Skip to main content

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Medical imaging is the primary data source most physicians refer to when making a diagnosis. However, examination of medical imaging data, due to its density and uncertainty, can be time-consuming and error-prone. The recent advent of data-driven artificial intelligence (AI) provides a promising solution, yet the adoption of AI in medicine is often hindered by the ‘black box’ nature. This chapter reviews how AI can distil new insights from medical imaging data and how a human-centered approach can transform AIs role as one that engages patients with self-assessment and personalized models and as one that enables physicians to comprehend and control how AI performs a diagnosis, thus able to collaborate with AI in making a diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider pathology as a type of medical imaging specialty, as the recent development in digital pathology has fostered a growing body of work on processing digitalized whole slide images, although traditionally images obtained from removed tissues for studying pathology are not considered medical imaging.

References

  1. Alansary A, Oktay O, Li Y, Le Folgoc L, Hou B, Vaillant G, Kamnitsas K, Vlontzos A, Glocker B, Kainz B et al (2019) Evaluating reinforcement learning agents for anatomical landmark detection. Med Image Anal 53:156–164

    Google Scholar 

  2. Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D (2016) Concrete problems in AI safety. arXiv preprint arXiv:1606.06565

  3. Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polónia A, Campilho A (2017) Classification of breast cancer histology images using convolutional neural networks. PloS ONE 12(6):e0177544

    Google Scholar 

  4. Armfield JM, Heaton L (2013) Management of fear and anxiety in the dental clinic: a review. Aust Dent J 58(4):390–407

    Google Scholar 

  5. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, Wey N, Wild PJ, Rueschoff JH, Claassen M (2018) Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep 8(1):1–11

    Google Scholar 

  6. Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41

    Google Scholar 

  7. Babenko B (2008) Multiple instance learning: algorithms and applications. View Article PubMed/NCBI Google Scholar, pp 1–19

    Google Scholar 

  8. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38(8):1788–1800

    Google Scholar 

  9. Bardou D, Zhang K, Ahmad SM (2018) Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6:24680–24693

    Google Scholar 

  10. Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L, Spurr C, Khorasani R, Tanasijevic M, Middleton B (2003) Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc: JAMIA 10(6):523–530. https://doi.org/10.1197/jamia.M1370, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC264429/

  11. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JA, Hermsen M, Manson QF, Balkenhol M et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210

    Google Scholar 

  12. Berner ES (2007) Clinical decision support systems, vol 233. Springer, Berlin

    Google Scholar 

  13. Beutel J, Kundel HL, Van Metter RL (2000) Handbook of medical imaging, vol 1. SPIE Press, Bellingham

    Google Scholar 

  14. de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 20–28

    Google Scholar 

  15. Cai CJ, Winter S, Steiner D, Wilcox L, Terry M (2019) " Hello AI": uncovering the onboarding needs of medical practitioners for human-AI collaborative decision-making. Proc ACM Hum-Comput Interact 3(CSCW), 1–24

    Google Scholar 

  16. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Silva VWK, Busam KJ, Brogi E, Reuter VE, Klimstra DS, Fuchs TJ (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25(8):1301–1309

    Google Scholar 

  17. Capuano F, Loke YH, Cronin I, Olivieri LJ, Balaras E (2019) Computational study of pulmonary flow patterns after repair of transposition of great arteries. J Biomech Eng 141(5)

    Google Scholar 

  18. Carroll JG (2002) Crossing the quality chasm: a new health system for the 21st century. Qual Manag Healthc 10(4):60–61

    Google Scholar 

  19. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N (2015) Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/2783258.2788613

  20. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, Chen J, Abcede H, Shafie M, Sugrue L et al (2018) Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. Am J Neuroradiol 39(9):1609–1616

    Google Scholar 

  21. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 424–432

    Google Scholar 

  22. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 411–418

    Google Scholar 

  23. Cohen LA (2013) Expanding the physician’s role in addressing the oral health of adults. Am J Public Health 103(3):408–412

    Google Scholar 

  24. Cooper GF, Abraham V, Aliferis CF, Aronis JM, Buchanan BG, Caruana R, Fine MJ, Janosky JE, Livingston G, Mitchell T, Monti S, Spirtes P (2005) Predicting dire outcomes of patients with community acquired pneumonia. J Biomed Inform 38(5):347–366. https://doi.org/10.1016/j.jbi.2005.02.005

    Article  Google Scholar 

  25. Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R, Fine MJ, Glymour C, Gordon G, Hanusa BH, Janosky JE, Meek C, Mitchell T, Richardson T, Spirtes P (1997) An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 9(2):107–138. https://doi.org/10.1016/s0933-3657(96)00367-3

    Article  Google Scholar 

  26. Croskerry P, Cosby K, Graber ML, Singh H (2017) Diagnosis: interpreting the shadows. CRC Press, Boca Raton

    Google Scholar 

  27. Deep P (2000) Screening for common oral diseases. J-Can Dent Assoc 66(6):298–299

    Google Scholar 

  28. Endo K, Sata N, Ishiguro Y, Miki A, Sasanuma H, Sakuma Y, Shimizu A, Hyodo M, Lefor A, Yasuda Y (2014) A patient-specific surgical simulator using preoperative imaging data: an interactive simulator using a three-dimensional tactile mouse. J Comput Surg 1(1):1–8

    Google Scholar 

  29. Ertosun MG, Rubin DL (2015) Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In: AMIA annual symposium proceedings, vol 2015. American Medical Informatics Association, p 1899

    Google Scholar 

  30. Eschweiler J, Stromps JP, Fischer M, Schick F, Rath B, Pallua N, Radermacher K (2016) A biomechanical model of the wrist joint for patient-specific model guided surgical therapy: part 2. Proc Inst Mech Eng Part H: J Eng Med 230(4):326–334

    Google Scholar 

  31. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118

    Google Scholar 

  32. Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm A, Deubner J, Jäckel Z, Seiwald K et al (2019) U-net: deep learning for cell counting, detection, and morphometry. Nat Methods 16(1):67–70

    Google Scholar 

  33. Fu H, Xu Y, Lin S, Wong DWK, Liu J (2016) Deepvessel: retinal vessel segmentation via deep learning and conditional random field. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 132–139

    Google Scholar 

  34. Fu H, Xu Y, Wong DWK, Liu J (2016) Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, pp 698–701

    Google Scholar 

  35. Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International conference on machine learning, pp 1050–1059

    Google Scholar 

  36. Gu H, Huang J, Hung L, Chen XA (2020) Lessons learned from designing an AI-enabled diagnosis tool for pathologists. arXiv:2006.12695 null

  37. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Google Scholar 

  38. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842

    Google Scholar 

  39. Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, Zatloukal K (2017) Towards the augmented pathologist: challenges of explainable-AI in digital pathology. arXiv preprint arXiv:1712.06657

  40. Huo Y, Xu Z, Xiong Y, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, Landman BA (2019) 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage 194:105–119

    Google Scholar 

  41. Ilse M, Tomczak JM, Welling M (2018) Attention-based deep multiple instance learning. arXiv preprint arXiv:1802.04712

  42. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K, Others (2019) Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI conference on artificial intelligence. http://aaai.org

  43. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243

    Google Scholar 

  44. Johnson S, Chapman K, Huebner G (1984) Stress reduction prior to oral surgery. Anesth Prog 31(4):165

    Google Scholar 

  45. Jothi N, Husain W et al (2015) Data mining in healthcare-a review. Procedia Comput Sci 72:306–313

    Google Scholar 

  46. Kassebaum N, Smith A, Bernabé E, Fleming T, Reynolds A, Vos T, Murray C, Marcenes W, Collaborators GOH (2017) Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res 96(4):380–387

    Google Scholar 

  47. Köbel M, Kalloger SE, Baker PM, Ewanowich CA, Arseneau J, Zherebitskiy V, Abdulkarim S, Leung S, Duggan MA, Fontaine D et al (2010) Diagnosis of ovarian carcinoma cell type is highly reproducible: a transcanadian study. Am J Surg Pathol 34(7):984–993

    Google Scholar 

  48. Kooi T, Litjens G, Van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312

    Google Scholar 

  49. Kuo W, Häne C, Mukherjee P, Malik J, Yuh EL (2019) Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci 116(45):22737–22745

    Google Scholar 

  50. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582

    Google Scholar 

  51. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL (2015) Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 175(11):1828–1837

    Google Scholar 

  52. Leufkens A, Van Oijen M, Vleggaar F, Siersema P (2012) Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(05):470–475

    Google Scholar 

  53. Li J, Pepe A, Gsaxner C, Egger J (2021) An online platform for automatic skull defect restoration and cranial implant design. arXiv preprint arXiv:2006.00980

  54. Liang Y, Fan HW, Fang Z, Miao L, Li W, Zhang X, Sun W, Wang K, He L, Chen X (2020) Oralcam: enabling self-examination and awareness of oral health using a smartphone camera. In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp 1–13

    Google Scholar 

  55. Liang Y, Qiu L, Lu T, Fang Z, Tu D, Yang J, Zhao T, Shao Y, Wang K, Chen XA, He L(2020): Oralviewer: 3D demonstration of dental surgeries for patient education with oral cavity reconstruction from a 2D panoramic X-ray

    Google Scholar 

  56. Liang Y, Song W, Dym J, Wang K, He L (2019) Comparenet: anatomical segmentation network with deep non-local label fusion. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 292–300

    Google Scholar 

  57. Liang Y, Song W, Yang J, Qiu L, Wang K, He L (2020) Atlas-aware convnet for accurate yet robust anatomical segmentation. In: Asian conference on machine learning. PMLR, pp 113–128

    Google Scholar 

  58. Lin C, Gao J, Zheng H, Zhao J, Yang H, Zheng Y, Cao Y, Chen Y, Wu G, Lin G et al (2019) When to introduce three-dimensional visualization technology into surgical residency: a randomized controlled trial. J Med Syst 43(3):71

    Google Scholar 

  59. Litjens G, Bandi P, Ehteshami Bejnordi B, Geessink O, Balkenhol M, Bult P, Halilovic A, Hermsen M, van de Loo R, Vogels R et al (2018) 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), giy065

    Google Scholar 

  60. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  61. Loke YH, Capuano F, Mandell J, Cross RR, Cronin I, Mass P, Balaras E, Olivieri LJ (2019) Abnormal pulmonary artery bending correlates with increased right ventricular afterload following the arterial switch operation. World J Pediatr Congenit Hear Surg 10(5):572–581

    Google Scholar 

  62. Majumder S, Deen MJ (2019) Smartphone sensors for health monitoring and diagnosis. Sensors 19(9):2164

    Google Scholar 

  63. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 140–148

    Google Scholar 

  64. Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging 35(5):1352–1363

    Google Scholar 

  65. Miller RA, Masarie FE (1990) The demise of the ‘Greek Oracle’ model for medical diagnostic systems. ISSN: 00261270 Publication Title: Methods of Information in Medicine

    Google Scholar 

  66. Miller RA, Masarie FE (1990) The demise of the ‘Greek Oracle’ model for medical diagnostic systems

    Google Scholar 

  67. Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571

    Google Scholar 

  68. Mills I, Frost J, Cooper C, Moles DR, Kay E (2014) Patient-centred care in general dental practice-a systematic review of the literature. BMC Oral Health 14(1):64

    Google Scholar 

  69. Nair T, Precup D, Arnold DL, Arbel T (2020) Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med Image Anal 59:101557

    Google Scholar 

  70. Nalisnik M, Amgad M, Lee S, Halani SH, Vega JEV, Brat DJ, Gutman DA, Cooper LA (2017) Interactive phenotyping of large-scale histology imaging data with HistomicsML. Sci Rep 7(1):14588

    Google Scholar 

  71. Olivieri LJ, Zurakowski D, Ramakrishnan K, Su L, Alfares FA, Irwin MR, Heichel J, Krieger A, Nath DS (2018) Novel, 3D display of heart models in the postoperative care setting improves CICU caregiver confidence. World J Pediatr Congenit Hear Surg 9(2):206–213

    Google Scholar 

  72. Oosterink FM, De Jongh A, Hoogstraten J (2009) Prevalence of dental fear and phobia relative to other fear and phobia subtypes. Eur J Oral Sci 117(2):135–143

    Google Scholar 

  73. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S (2019) 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging 49(2):400–410

    Google Scholar 

  74. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2(3):158

    Google Scholar 

  75. Prinz A, Bolz M, Findl O (2005) Advantage of three dimensional animated teaching over traditional surgical videos for teaching ophthalmic surgery: a randomised study. Br J Ophthalmol 89(11):1495–1499

    Google Scholar 

  76. Qadir HA, Balasingham I, Solhusvik J, Bergsland J, Aabakken L, Shin Y (2019) Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video. IEEE J Biomed Health Inform 24(1):180–193

    Google Scholar 

  77. Rosenthal DF, Bos JM, Sokolowski RA, Mayo JB, Quigley KA, Powell RA, Teel MM (1997) A voice-enabled, structured medical reporting system. J Am Med Inform Assoc 4(6):436–441

    Google Scholar 

  78. Roux L, Racoceanu D, Loménie N, Kulikova M, Irshad H, Klossa J, Capron F, Genestie C, Le Naour G, Gurcan MN (2013) Mitosis detection in breast cancer histological images an ICPR 2012 contest. J Pathol Inform 4

    Google Scholar 

  79. Rozier RG, Horowitz AM, Podschun G (2011) Dentist-patient communication techniques used in the united states: the results of a national survey. J Am Dent Assoc 142(5):518–530

    Google Scholar 

  80. Rubin GD (2015) Lung nodule and cancer detection in CT screening. J Thorac Imaging 30(2):130

    Google Scholar 

  81. Schaekermann M, Cai CJ, Huang AE, Sayres R (2020) Expert discussions improve comprehension of difficult cases in medical image assessment. In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp 1–13

    Google Scholar 

  82. Settles B (2009) Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical Report

    Google Scholar 

  83. Shan H, Padole A, Homayounieh F, Kruger U, Khera RD, Nitiwarangkul C, Kalra MK, Wang G (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1(6):269–276

    Google Scholar 

  84. Shiping X, Jean-Paul D, Yuan L (2020) System for generating medical reports for imaging studies. US Patent App. 17/006,590

    Google Scholar 

  85. Shortliffe EH (1974) A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In: Proceedings of the 1974 annual ACM conference-volume 2, p 739

    Google Scholar 

  86. Shortliffe EH (1993) The adolescence of AI in medicine: will the field come of age in the ’90s? Artif Intell Med. https://doi.org/10.1016/0933-3657(93)90011-Q

  87. Smith-Bindman R, Kwan ML, Marlow EC, Theis MK, Bolch W, Cheng SY, Bowles EJ, Duncan JR, Greenlee RT, Kushi LH et al (2019) Trends in use of medical imaging in us health care systems and in Ontario, Canada, 2000–2016. JAMA 322(9):843–856

    Google Scholar 

  88. Smith-Bindman R, Miglioretti DL, Larson EB (2008) Rising use of diagnostic medical imaging in a large integrated health system. Health Aff 27(6):1491–1502

    Google Scholar 

  89. Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 230–233

    Google Scholar 

  90. Song W, Liang Y, Wang K, He L (2021) Oral-3D: reconstructing the 3D bone structure of oral cavity from 2D panoramic X-ray. In: Proceedings of the AAAI conference on artificial intelligence

    Google Scholar 

  91. Stewart MA (1995) Effective physician-patient communication and health outcomes: a review. CMAJ: Can Med Assoc J 152(9):1423

    Google Scholar 

  92. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI (2020) An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med 3(1):1–10

    Google Scholar 

  93. Teel MM, Sokolowski R, Rosenthal D, Belge M (1998) Voice-enabled structured medical reporting. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 595–602

    Google Scholar 

  94. Travaline JM, Ruchinskas R, D’Alonzo GE Jr (2005) Patient-physician communication: why and how. J Am Osteopat Assoc 105(1):13

    Google Scholar 

  95. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, Baldi P (2018) Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155(4):1069–1078

    Google Scholar 

  96. Vardell E, Bou-Crick C (2012) VisualDX: a visual diagnostic decision support tool. Med Ref Serv Q 31(4):414–424

    Google Scholar 

  97. Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, Rohr K, Shah MA, Wang D, Rousson M et al (2019) Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med Image Anal 54:111–121

    Google Scholar 

  98. Veta M, Van Diest PJ, Willems SM, Wang H, Madabhushi A, Cruz-Roa A, Gonzalez F, Larsen AB, Vestergaard JS, Dahl AB et al (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20(1):237–248

    Google Scholar 

  99. Wang P, Xiao X, Brown JRG, Berzin TM, Tu M, Xiong F, Hu X, Liu P, Song Y, Zhang D et al (2018) Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng 2(10):741–748

    Google Scholar 

  100. Wears RL, Berg M (2005) Computer technology and clinical work: still waiting for Godot. JAMA 293(10):1261–1263. https://doi.org/10.1001/jama.293.10.1261

    Article  Google Scholar 

  101. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113

    Google Scholar 

  102. Welker SA (2014) Urogynecology patient education: visualizing surgical management of pelvic organ prolapse. PhD thesis, Johns Hopkins University

    Google Scholar 

  103. Whitman RM, Dufeau D (2017) Visualization of cardiac anatomy: new approaches for medical education. FASEB J 31(1\_supplement), 736–8

    Google Scholar 

  104. Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Thomas L, Lallas A, Blum A, Stolz W et al (2019) Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol 155(10):1135–1141

    Google Scholar 

  105. Wolf JA, Moreau JF, Akilov O, Patton T, English JC, Ho J, Ferris LK (2013) Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatol 149(4):422–426

    Google Scholar 

  106. Xie Y, Chen M, Kao D, Gao G, Chen XA (2020) CheXplain: enabling physicians to explore and understand data-driven, AI-enabled medical imaging analysis. In: Proceedings of the 2020 CHI conference on human factors in computing systems, CHI ’20. Association for Computing Machinery, New York, pp 1–13. https://doi.org/10.1145/3313831.3376807

  107. Xie Y, Gao G, Chen XA (2019) Outlining the design space of explainable intelligent systems for medical diagnosis

    Google Scholar 

  108. Xu Y, Zhu JY, Chang E, Tu Z (2012) Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 964–971

    Google Scholar 

  109. Yang J, Liang Y, Zhang Y, Song W, Wang K, He L (2020) Exploring instance-level uncertainty for medical detection

    Google Scholar 

  110. Yang X, Hu J, Zhu S, Liang X, Li J, Luo E (2011) Computer-assisted surgical planning and simulation for condylar reconstruction in patients with osteochondroma. Br J Oral Maxillofac Surg 49(3):203–208

    Google Scholar 

  111. Yu L, Chen H, Dou Q, Qin J, Heng PA (2016) Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE J Biomed Health Inform 21(1):65–75

    Google Scholar 

  112. Zhan ZQ, Fu H, Yang YY, Chen J, Liu J, Jiang YG (2020) Colonoscopy polyp detection: domain adaptation from medical report images to real-time videos

    Google Scholar 

  113. Zhang QS, Zhu SC (2018) Visual interpretability for deep learning: a survey. Front Inf Technol Electron Eng 19(1):27–39

    Google Scholar 

  114. Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2020) A review of deep learning in medical imaging: image traits, technology trends, case studies with progress highlights, and future promises. arXiv preprint arXiv:2008.09104

  115. Zhou ZH (2004) Multi-instance learning: a survey. Department of Computer Science & Technology, Nanjing University, Technical Report

    Google Scholar 

  116. Zhu Y, Zhang S, Liu W, Metaxas DN (2014) Scalable histopathological image analysis via active learning. In: International conference on medical image computing and computer-assisted intervention. Springer , pp 369–376

    Google Scholar 

  117. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang ‘Anthony’ Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, Y., He, L., ‘Anthony’ Chen, X. (2021). Human-Centered AI for Medical Imaging. In: Li, Y., Hilliges, O. (eds) Artificial Intelligence for Human Computer Interaction: A Modern Approach. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-82681-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82681-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82680-2

  • Online ISBN: 978-3-030-82681-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics