Abstract
Machine learning (ML) has become a powerful tool with the potential to enable new interactions and user experiences. Although the use of ML in HCI research is growing, the process of prototyping and deploying ML remains challenging. We claim that ML tools designed to be used on the Web are suitable for fast prototyping and HCI research. In this chapter, we review literature, current technologies, and use cases of ML tools for the Web. We also provide a case study, using TensorFlow.js—a major Web ML library, to demonstrate how to prototype with Web ML tools in different prototyping scenarios. At the end, we discuss challenges and future directions of designing tools for fast prototyping and research.
N. Li, J. Mayes and P. Yu—have equal contributions to this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
This model contains 3.47M parameters, which results in 300 million multiply-accumulate operations in every model execution.
- 36.
This model contains around 15.1M parameters.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
References
Ashktorab Z, Jain M, Vera Liao Q, Weisz JD (2019) Resilient chatbots: repair strategy preferences for conversational breakdowns. In: Proceedings of the 2019 CHI conference on human factors in computing systems (CHI ’19). Association for Computing Machinery, New York, NY, USA, Article Paper 254, 12 pp. ISBN 9781450359702. https://doi.org/10.1145/3290605.3300484
Bisong E (2019) Google AutoML: cloud vision. In: Building machine learning and deep learning models on google cloud platform. Apress, Berkeley, CA, pp 581–598
Bosch N, D’Mello S, Baker R, Ocumpaugh J, Shute V, Ventura M, Wang L, Zhao W (2015) Automatic detection of learning-centered affective states in the wild. In: Proceedings of the 20th international conference on intelligent user interfaces (IUI ’15). Association for Computing Machinery, New York, NY, USA, pp 379–388. ISBN 9781450333061. https://doi.org/10.1145/2678025.2701397
Cai CJ, Guo PJ (2019) Software developers learning machine learning: motivations, hurdles, and desires. In: 2019 IEEE symposium on visual languages and human-centric computing (VL/HCC), pp 25–34. https://doi.org/10.1109/VLHCC.2019.8818751
Carney M, Webster B, Alvarado I, Phillips K, Howell N, Griffith J, Jongejan J, Pitaru A, Chen A (2020) Teachable machine: approachable web-based tool for exploring machine learning classification. In: Extended abstracts of the 2020 CHI conference on human factors in computing systems (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, pp 1–8. ISBN 9781450368193. https://doi.org/10.1145/3334480.3382839
David R, Duke J, Jain A, Janapa Reddi V, Jeffries N, Li J, Kreeger N, Nappier I, Natraj M, Regev S, Rhodes R, Wang T, Warden P (2021) TensorFlow lite micro: embedded machine learning on TinyML systems
Dove G, Halskov K, Forlizzi J, Zimmerman J (2017) UX design innovation: challenges for working with machine learning as a design material. In: Proceedings of the 2017 CHI conference on human factors in computing systems (CHI ’17). Association for Computing Machinery, New York, NY, USA, pp 278–288. ISBN 9781450346559. https://doi.org/10.1145/3025453.3025739
Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient and robust automated machine learning. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. 11, 1. ISSN1931-0145. https://doi.org/10.1145/1656274.1656278
Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications
Inkpen K, Chancellor S, De Choudhury M, Veale M, Baumer EPS (2019) Where is the human? Bridging the gap between AI and HCI (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, pp 1–9. ISBN 9781450359719. https://doi.org/10.1145/3290607.3299002
Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, Adam H, Kalenichenko D (2017) Quantization and training of neural networks for efficient integer-arithmetic-only inference
Jiang X, Wang H, Chen Y, Wu Z, Wang L, Zou B, Yang Y, Cui Z, Cai Y, Yu T, Lv C, Wu Z (2020) MNN: a universal and efficient inference engine
Jun J, Jung M, Kim S-Y, (Kenny) Kim K (2018) Full-body ownership illusion can change our emotion. In: Proceedings of the 2018 CHI conference on human factors in computing systems (CHI ’18). Association for Computing Machinery, New York, NY, USA, Article Paper 601, 11 pp ISBN 9781450356206. https://doi.org/10.1145/3173574.3174175
Kotthoff L, Thornton C, Hoos HH, Hutter F, Kevin L-B (2019) Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA. Automated machine learning. Springer, Cham, pp 81–95
Lee MK, Grgić-Hlača N, Carl Tschantz M, Binns R, Weller A, Carney M, Inkpen K (2020) Human-centered approaches to fair and responsible AI. In: Extended abstracts of the 2020 CHI conference on human factors in computing systems (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, pp 1–8. ISBN 9781450368193. https://doi.org/10.1145/3334480.3375158
Li Y (2010) Protractor: a fast and accurate gesture recognizer. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’10). Association for Computing Machinery, New York, NY, USA, pp 2169–2172. ISBN 9781605589299. https://doi.org/10.1145/1753326.1753654
Li Y, Kumar R, Lasecki WS, Hilliges O (2020) Artificial intelligence for HCI: a modern approach. In: Extended abstracts of the 2020 CHI conference on human factors in computing systems (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, pp 1–8. ISBN 9781450368193. https://doi.org/10.1145/3334480.3375147
Ma Y, Xiang D, Zheng S, Tian D, Liu X (2019) Moving deep learning into web browser: how far can we go?
Maynes-Aminzade D, Winograd T, Igarashi T (2007) Eyepatch: prototyping camera-based interaction through examples. In: Proceedings of the 20th annual ACM symposium on user interface software and technology (UIST ’07). Association for Computing Machinery, New York, NY, USA, pp 33–42. ISBN 9781595936790. https://doi.org/10.1145/1294211.1294219
Munteanu C, Jones M, Oviatt S, Brewster S, Penn G, Whittaker S, Rajput N, Nanavati A (2013) We need to talk: HCI and the delicate topic of spoken language interaction. In: CHI ’13 extended abstracts on human factors in computing systems (CHI EA ’13). Association for Computing Machinery, New York, NY, USA, pp 2459–2464. ISBN 9781450319522. https://doi.org/10.1145/2468356.2468803
Myers BA, Ko AJ, Burnett MM (2006) Invited research overview: end-user programming. In: CHI ’06 extended abstracts on human factors in computing systems (CHI EA ’06). Association for Computing Machinery, New York, NY, USA, pp 75–80. ISBN 1595932984. https://doi.org/10.1145/1125451.1125472
Patel K, Bancroft N, Drucker SM, Fogarty J, Ko AJ, Landay J (2010) Gestalt: integrated support for implementation and analysis in machine learning. In: Proceedings of the 23nd annual ACM symposium on user interface software and technology (UIST ’10). Association for Computing Machinery, New York, NY, USA, pp 37–46. ISBN 9781450302715. https://doi.org/10.1145/1866029.1866038
Patel K, Fogarty J, Landay JA, Harrison B (2008) Examining difficulties software developers encounter in the adoption of statistical machine learning. In: Proceedings of the 23rd national conference on artificial intelligence - volume 3 (AAAI’08). AAAI Press, pp 1563–1566. ISBN 9781577353683
Pece F, Steptoe W, Wanner F, Julier S, Weyrich T, Kautz J, Steed A (2013) Panoinserts: mobile spatial teleconferencing. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’13). Association for Computing Machinery, New York, NY, USA, pp 1319–1328. ISBN 9781450318990. https://doi.org/10.1145/2470654.2466173
Rick SR, Bhaskaran S, Sun Y, McEwen S, Weibel N (2019) NeuroPose: geriatric rehabilitation in the home using a webcam and pose estimation. In: Proceedings of the 24th international conference on intelligent user interfaces: companion (IUI ’19). Association for Computing Machinery, New York, NY, USA, pp 105–106. ISBN 9781450366731. https://doi.org/10.1145/3308557.3308682
Rubin Z, Kurniawan S, Gotfrid T, Pugliese A (2016) Motivating individuals with spastic cerebral palsy to speak using mobile speech recognition. In: Proceedings of the 18th international ACM SIGACCESS conference on computers and accessibility (ASSETS ’16). Association for Computing Machinery, New York, NY, USA, pp 325–326. ISBN 9781450341240. https://doi.org/10.1145/2982142.2982203
Sewell W, Komogortsev O (2010) Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network. In: CHI ’10 extended abstracts on human factors in computing systems (CHI EA ’10). Association for Computing Machinery, New York, NY, USA, pp 3739–3744. ISBN 9781605589305. https://doi.org/10.1145/1753846.1754048
Smilkov D, Thorat N, Assogba Y, Yuan A, Kreeger N, Yu P, Zhang K, Cai S, Nielsen E, Soergel D et al (2019) Tensorflow. js: machine learning for the web and beyond. arXiv:1901.05350
Song Y, Demirdjian D, Davis R (2012) Continuous body and hand gesture recognition for natural human-computer interaction. ACM Trans Interact Intell Syst 2, 1, Article 5, 28 pp. ISSN2160-6455. https://doi.org/10.1145/2133366.2133371
Stackoverflow (2020) 2020 StackOverflow developer survey. https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers
Thieme A, Belgrave D, Doherty G (2020) Machine learning in mental health: a systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Trans Comput-Hum Interact 27, 5, Article 34, 53 pp. ISSN1073-0516. https://doi.org/10.1145/3398069
Wang R, Paris S, Popoviundefined J (2011) 6D hands: markerless hand-tracking for computer aided design. In: Proceedings of the 24th annual ACM symposium on user interface software and technology (UIST ’11). Association for Computing Machinery, New York, NY, USA, pp 549–558. ISBN 9781450307161. https://doi.org/10.1145/2047196.2047269
Xu A, Liu Z, Guo Y, Sinha V, Akkiraju R (2017) A new chatbot for customer service on social media. In: Proceedings of the 2017 CHI conference on human factors in computing systems (CHI ’17). Association for Computing Machinery, New York, NY, USA, pp 3506–3510. ISBN 9781450346559. https://doi.org/10.1145/3025453.3025496
Yamashita N, Ishida T (2006) Effects of machine translation on collaborative work. In: Proceedings of the 2006 20th anniversary conference on computer supported cooperative work (CSCW ’06). Association for Computing Machinery, New York, NY, USA, pp 515–524. ISBN 1595932496. https://doi.org/10.1145/1180875.1180955
Yang Q, Suh J, Chen N-C, Ramos G (2018) Grounding interactive machine learning tool design in how non-experts actually build models. In: Proceedings of the 2018 designing interactive systems conference (DIS ’18). Association for Computing Machinery, New York, NY, USA, pp 573–584. ISBN 9781450351980. https://doi.org/10.1145/3196709.3196729
Yuan A, Li Y (2020) Modeling human visual search performance on realistic webpages using analytical and deep learning methods. In: Proceedings of the 2020 CHI conference on human factors in computing systems (CHI ’20). Association for Computing Machinery, New York, NY, USA, pp 1–12. ISBN 9781450367080. https://doi.org/10.1145/3313831.3376870
Acknowledgements
We would like to thank Sandeep Gupta and Daniel Smilkov for their contributions and valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Li, N., Mayes, J., Yu, P. (2021). ML Tools for the Web: A Way for Rapid Prototyping and HCI Research. In: Li, Y., Hilliges, O. (eds) Artificial Intelligence for Human Computer Interaction: A Modern Approach. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-82681-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-82681-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82680-2
Online ISBN: 978-3-030-82681-9
eBook Packages: Computer ScienceComputer Science (R0)