Skip to main content

Optimizing Execution Plans in a Multistore

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12843)

Abstract

Multistores are data management systems that enable query processing across different database management systems (DBMSs); besides the distribution of data, complexity factors like schema heterogeneity and data replication must be resolved through integration and data fusion activities. In a recent work [2], we have proposed a multistore solution that relies on a dataspace to provide the user with an integrated view of the available data and enables the formulation and execution of GPSJ (generalized projection, selection and join) queries. In this paper, we propose a technique to optimize the execution of GPSJ queries by finding the most efficient execution plan on the multistore. In particular, we devise three different strategies to carry out joins and data fusion, and we build a cost model to enable the evaluation of different execution plans. Through the experimental evaluation, we are able to profile the suitability of each strategy to different multistore configurations, thus validating our multi-strategy approach and motivating further research on this topic.

Keywords

  • Multistore
  • NoSQL
  • Join optimization
  • Cost model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82472-3_11
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-82472-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    Remarkably, many-to-one relationships are at the base of the multidimensional model and GPSJ queries [12], as well as our dataspace-based approach [2].

  2. 2.

    Although the level of parallelism in Spark is given in terms of CPU cores, we consider the number of machines because the cost model is focused on disk IO rather than on CPU computation.

References

  1. Baldacci, L., Golfarelli, M.: A cost model for SPARK SQL. IEEE Trans. Knowl. Data Eng. 31(5), 819–832 (2019)

    CrossRef  Google Scholar 

  2. Ben Hamadou, H., Gallinucci, E., Golfarelli, M.: Answering GPSJ queries in a polystore: a dataspace-based approach. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 189–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_16

    CrossRef  Google Scholar 

  3. Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Data variety, come as you are in multi-model data warehouses. Inf. Syst. 101734 (2021)

    Google Scholar 

  4. Bleiholder, J., Naumann, F.: Declarative data fusion – syntax, semantics, and implementation. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 58–73. Springer, Heidelberg (2005). https://doi.org/10.1007/11547686_5

    CrossRef  Google Scholar 

  5. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. (CSUR) 41(1), 1–41 (2009)

    CrossRef  Google Scholar 

  6. Bonaque, R., et al.: Mixed-instance querying: a lightweight integration architecture for data journalism. Proc. VLDB Endow. 9(13), 1513–1516 (2016)

    CrossRef  Google Scholar 

  7. DeWitt, D.J., et al.: Implementation techniques for main memory database systems. In: Proceedings of the 1984 SIGMOD Annual Meeting, pp. 1–8 (1984)

    Google Scholar 

  8. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas from nested key-value data. In: 2016 ACM SIGMOD International Conference on Management of Data, pp. 295–310. ACM (2016)

    Google Scholar 

  9. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new abstraction for information management. SIGMOD Rec. 34(4), 27–33 (2005)

    CrossRef  Google Scholar 

  10. Gadepally, V., et al.: The BIGDAWG polystore system and architecture. In: 2016 IEEE High Performance Extreme Computing Conference, pp. 1–6. IEEE (2016)

    Google Scholar 

  11. Gallinucci, E., Golfarelli, M., Rizzi, S.: Approximate OLAP of document-oriented databases: a variety-aware approach. Inf. Syst. 85, 114–130 (2019)

    CrossRef  Google Scholar 

  12. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

    CrossRef  Google Scholar 

  13. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: 2008 ACM SIGMOD International Conference on Management of Data, pp. 847–860. ACM (2008)

    Google Scholar 

  14. Kolev, B., et al.: CloudMDSQL: querying heterogeneous cloud data stores with a common language. Distrib. Parallel Databases 34(4), 463–503 (2016)

    CrossRef  Google Scholar 

  15. Maccioni, A., Torlone, R.: Augmented access for querying and exploring a polystore. In: 34th IEEE International Conference on Data Engineering, ICDE 2018, pp. 77–88. IEEE Computer Society (2018)

    Google Scholar 

  16. Mandreoli, F., Montangero, M.: Dealing with data heterogeneity in a data fusion perspective: models, methodologies, and algorithms. In: Data Handling in Science and Technology, vol. 31, pp. 235–270. Elsevier (2019)

    Google Scholar 

  17. Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comput. Surv. 24(1), 63–113 (1992)

    CrossRef  Google Scholar 

  18. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. Inf. Syst. 29(7), 583–615 (2004)

    CrossRef  Google Scholar 

  19. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education, London (2013)

    Google Scholar 

  20. Shi, J., et al.: Clash of the titans: mapreduce vs. spark for large scale data analytics. Proc. VLDB Endow. 8(13), 2110–2121 (2015)

    CrossRef  Google Scholar 

  21. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing across heterogeneous data models: a survey. In: 2017 IEEE International Conference on Big Data, pp. 3211–3220. IEEE Computer Society (2017)

    Google Scholar 

  22. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: a benchmark for multi-model database management systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2018. LNCS, vol. 11135, pp. 7–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11404-6_2

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Gallinucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Forresi, C., Francia, M., Gallinucci, E., Golfarelli, M. (2021). Optimizing Execution Plans in a Multistore. In: Bellatreche, L., Dumas, M., Karras, P., Matulevičius, R. (eds) Advances in Databases and Information Systems. ADBIS 2021. Lecture Notes in Computer Science(), vol 12843. Springer, Cham. https://doi.org/10.1007/978-3-030-82472-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82472-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82471-6

  • Online ISBN: 978-3-030-82472-3

  • eBook Packages: Computer ScienceComputer Science (R0)