Skip to main content

Sourcing the Right Open Data: A Design Science Research Approach for the Enterprise Context

  • Conference paper
  • First Online:
The Next Wave of Sociotechnical Design (DESRIST 2021)

Abstract

Open data has become increasingly attractive for users, especially companies, due to its value-creating capabilities and innovation potential. One essential challenge is to identify and leverage suitable open datasets that support specific business scenarios as well as strategic data goals. To overcome this challenge, companies need elaborate processes for open data sourcing. To this end, our research aims to develop prescriptive knowledge in the form of a meaningful method for screening, assessing, and preparing open data for use in an enterprise setting. In line with the principles of Action Design Research (ADR), we iteratively develop a method that comprises four phases and is enabled by knowledge graphs and linked data concepts. Our method supports companies in sourcing open data of uncertain data quality in a value-adding and demand-oriented manner, while creating more transparency about its content, licensing, and access conditions. From an academic perspective, our research conceptualizes open data sourcing as a purposeful and value-creating process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Open Definition: Defining Open in Open Data, Open Content and Open Knowledge. https://opendefinition.org/. Accessed 27 May 2021

  2. Tammisto, Y., Lindman, J.: Definition of open data services in software business. In: Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 297–303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30746-1_28

    Chapter  Google Scholar 

  3. Zuiderwijk, A., Janssen, M., Poulis, K., van de Kaa, G.: Open data for competitive advantage. In: Proceedings of the 16th Annual International Conference on Digital Government Research, pp. 79–88 (2015)

    Google Scholar 

  4. Schatsky, D., Camhi, J., Muraskin, C.: Data ecosystems: how third-party information can enhance data analytics. Deloitte (2019).

    Google Scholar 

  5. Enders, T., Benz, C., Satzger, G.: Untangling the open data value paradox. In: Proceedings of Wirtschaftsinformatik 2021 (2021)

    Google Scholar 

  6. Krasikov, P., Obrecht, T., Legner, C., Eurich, M.: Is open data ready for use by enterprises? In: Proceedings of the 9th International Conference on Data Science, Technology and Applications, pp. 109–120. SCITEPRESS (2020)

    Google Scholar 

  7. Vetrò, A., Canova, L., Torchiano, M., Minotas, C.O., Iemma, R., Morando, F.: Open data quality measurement framework. Gov. Inf. Q. 33, 325–337 (2016)

    Article  Google Scholar 

  8. Bachtiar, A., Suhardi, Muhamad, W.: Literature review of open government data. In: Proceedings of the 2020 International Conference on Information Technology Systems and Innovation, pp. 329–334 (2020)

    Google Scholar 

  9. Enders, T., Benz, C., Schüritz, R., Lujan, P.: How to implement an open data strategy? Analyzing organizational change processes to enable value creation by revealing data. In: Proceedings of the 28th European Conference on Information Systems (2020)

    Google Scholar 

  10. Ruijer, E., Grimmelikhuijsen, S., van den Berg, J., Meijer, A.: Open data work: understanding open data usage from a practice lens. Int. Rev. Adm. Sci. 86, 3–19 (2018)

    Article  Google Scholar 

  11. Jarvenpaa, S.L., Markus, M.L.: Data sourcing and data partnerships: opportunities for is sourcing research. In: Hirschheim, R., Heinzl, A., Dibbern, J. (eds.) Information Systems Outsourcing. PI, pp. 61–79. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45819-5_4

    Chapter  Google Scholar 

  12. Baskerville, R., Pries-Heje, J., Venable, J.: Evaluation risks in design science research: a framework. In: Proceedings of the 3rd International Conference on Design Science Research in Information Systems and Technology (2008)

    Google Scholar 

  13. Chandrasekaran, B.: Design problem solving: a task analysis. AI Mag. 11, 59–71 (1990)

    Google Scholar 

  14. Opendatasoft: A Comprehensive List of 2600+ Open Data Portals in the World. https://opendatainception.io/. Accessed 19 Apr 2021

  15. EU Open Data Portal. https://data.europa.eu/euodp/en/data/. Accessed 19 Apr 2021

  16. Data.gov. https://www.data.gov/. Accessed 19 Apr 2021

  17. Braunschweig, K., Eberius, J., Thiele, M., Lehner, W.: The state of open data. In: Proceedings of 21st World Wide Web Conference, pp. 1–6. ACM (2012)

    Google Scholar 

  18. Manyika, J., Chui, M., Groves, P., Farrell, D., Van Kuiken, S., Doshi, E.A.: Open data: unlocking innovation and performance with liquid information. McKinsey (2013)

    Google Scholar 

  19. Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 29, 258–268 (2012)

    Article  Google Scholar 

  20. Zuiderwijk, A., Janssen, M., Choenni, S., Meijer, R., Alibaks, R.S.: Socio-technical Impediments of Open Data. Electron. J. e-Govern. 10, 156–172 (2012)

    Google Scholar 

  21. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5, 1–22 (2009)

    Google Scholar 

  22. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  23. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web. 7, 63–93 (2016)

    Article  Google Scholar 

  24. Zhang, R., Indulska, M., Sadiq, S.: Discovering data quality problems: the case of repurposed data. BISE 61, 575–593 (2019)

    Google Scholar 

  25. Martin, S., Foulonneau, M., Turki, S., Ihadjadene, M.: Risk analysis to overcome barriers to open data. Electron. J. e-Govern. 11, 348–359 (2013)

    Google Scholar 

  26. Stróżyna, M., Eiden, G., Abramowicz, W., Filipiak, D., Małyszko, J.: A framework for the quality-based selection and retrieval of open data. Electron. Mark. 28, 219–233 (2018)

    Article  Google Scholar 

  27. Ren, G.-J., Glissmann, S.: Identifying information assets for open data. In: 2012 IEEE 14th International Conference on Commerce and Enterprise Computing, pp. 94–100. IEEE (2012)

    Google Scholar 

  28. Zuiderwijk, A., Janssen, M.: Barriers and development directions for the publication and usage of open data. In: Gascó-Hernández, M. (ed.) Open Government, vol. 4, pp. 115–135. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9563-5_8

    Chapter  Google Scholar 

  29. Masip-Bruin, X., Ren, G.-J., Serral-Gracia, R., Yannuzzi, M.: Unlocking the value of open data with a process-based information platform. In: 2013 IEEE 15th Conference on Business Informatics, pp. 331–337. IEEE (2013)

    Google Scholar 

  30. Hendler, J.: Data integration for heterogenous datasets. Big Data 2, 205–215 (2014)

    Article  Google Scholar 

  31. Crusoe, J., Melin, U.: Investigating open government data barriers: a literature review and conceptualization. In: Parycek, P., et al. (eds.) Electronic Government. LNCS, vol. 11020, pp. 169–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98690-6_15

    Chapter  Google Scholar 

  32. Abella, A., Ortiz-de-Urbina-Criado, M., De-Pablos-Heredero, C.: The process of open data publication and reuse. JASIST 70, 296–300 (2019)

    Google Scholar 

  33. Abida, R., Belghith, E.H., Cleve, A.: An end-to-end framework for integrating and publishing linked open government data. In: Proceeding of the 29th International Conference on Enabling Technologies, pp. 257–262. IEEE (2020)

    Google Scholar 

  34. Jaakkola, H., Mäkinen, T., Eteläaho, A.: Open data: opportunities and challenges. In: Proceedings of the 15th CompSysTech, pp. 25–39. ACM (2014)

    Google Scholar 

  35. Immonen, A., Palviainen, M., Ovaska, E.: Requirements of an open data based business ecosystem. IEEE Access 2, 88–103 (2014)

    Article  Google Scholar 

  36. Buda, A., Ubacht, J., Janssen, M.: Decision support framework for opening business data. In: Proceedings of the 16th European Conference on e-Government, pp. 29–37 (2016)

    Google Scholar 

  37. Goldkuhl, G., Lind, M., Seigerroth, U.: Method integration: the need for a learning perspective. In: IEE Proceedings – Software, p. 113 (1998)

    Google Scholar 

  38. Sandkuhl, K., Seigerroth, U.: Method engineering in information systems analysis and design. Softw. Syst. Modell. 18, 1833–1857 (2019)

    Article  Google Scholar 

  39. Gregor, S.: The nature of theory in information systems. MIS Q. 30, 611–642 (2006)

    Article  Google Scholar 

  40. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q. 35, 37–56 (2011)

    Article  Google Scholar 

  41. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Article  Google Scholar 

  42. Andriessen, D.: Combining design-based research and action research to test management solutions. In: Towards Quality Improvement of Action Research, pp. 125–134 (2008)

    Google Scholar 

  43. Paulheim, H.: Knowledge graph refinement. Semant. Web. 8, 489–508 (2016)

    Article  Google Scholar 

  44. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45, 211 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krasikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krasikov, P., Legner, C., Eurich, M. (2021). Sourcing the Right Open Data: A Design Science Research Approach for the Enterprise Context. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds) The Next Wave of Sociotechnical Design. DESRIST 2021. Lecture Notes in Computer Science(), vol 12807. Springer, Cham. https://doi.org/10.1007/978-3-030-82405-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82405-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82404-4

  • Online ISBN: 978-3-030-82405-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics