Skip to main content

Knowledge is Power: Provide Your IT-Support with Domain-Specific High-Quality Solution Material

  • Conference paper
  • First Online:
The Next Wave of Sociotechnical Design (DESRIST 2021)

Abstract

As more and more business processes are based on IT services the high availability of these processes is dependent on the IT-Support. Thus, making the IT-Support a critical success factor of companies. This paper presents how this department can be supported by providing the staff with domain-specific and high-quality solution material to help employees faster when errors occur. The solution material is based on previously solved tickets because these contain precise domain-specific solutions narrowed down to e.g., specific versions and configurations of hard-/software used in the company. To retrieve the solution material ontologies are used that contain the domain-specific vocabulary needed. Because not all previously solved tickets contain high-quality solution material that helps the staff to fix issues the de-signed IT-Support system separates low- from high-quality solution material. This paper presents (a) theory- and practical-motivated design requirements that describe the need for automatically retrieved solution material, (b) develops two major design principles to retrieve domain-specific and high-quality solution material, and (c) evaluates the instantiations of them as a prototype with organic real-world data. The results show that previously solved tickets of a company can be pre-processed and retrieved to IT-Support staff based on their current queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Abad, J.M., López-Nozal, C., Maudes-Raedo, J.M., Marticorena-Sánchez, R.: Label prediction on issue tracking systems using text mining. Prog. Artif. Intell. 8(3), 325–342 (2019). https://doi.org/10.1007/s13748-019-00182-2

    Article  Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM press, New York (1999)

    Google Scholar 

  3. Brooke, J.: SUS: A “Quick and Dirty” usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., et al. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor & Francis, London (1996)

    Google Scholar 

  4. Chagnon, C., Trapp, A., Djamasbi, S.: Creating a decision support system for service classification and assignment through optimization. In: AMCIS 2017 Proceedings (2017)

    Google Scholar 

  5. Denny, M., Spirling, A.: Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Polit. Anal. 26, 168–189 (2018)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.-W., Lee, K., et al.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

  9. Gregor, S., Kruse, L.C., Seidel, S.: The anatomy of a design principle. J. Assoc. Inf. Syst. Forthcoming (2020)

    Google Scholar 

  10. Grupe, F.H.: Outsourcing the help desk function. Inf. Syst. Manag. 14, 15–22 (1997). https://doi.org/10.1080/10580539708907040

    Article  Google Scholar 

  11. Hevner, A.R., March, S.T., Park, J., et al.: Design science in information systems research. MIS Q. 28, 75–105 (2004). https://doi.org/10.2307/25148625

    Article  Google Scholar 

  12. Kubiak, P., Rass, S.: An overview of data-driven techniques for IT-Service-Management. IEEE Access 6, 63664–63688 (2018). https://doi.org/10.1109/ACCESS.2018.2875975

    Article  Google Scholar 

  13. Lacity, M.C., Khan, S.A., Willcocks, L.P.: A review of the IT outsourcing literature: insights for practice. J. Strateg. Inf. Syst. 18, 130–146 (2009)

    Article  Google Scholar 

  14. Lamkanfi, A., Demeyer, S., Soetens, Q.D., et al.: Comparing mining algorithms for predicting the severity of a reported bug. In: 15th European Conference on Software Maintenance and Reengineering, pp. 249–258 (2011)

    Google Scholar 

  15. Lee, Y., Lee, S., Lee, C.-G., et al.: Continual prediction of bug-fix time using deep learning-based activity stream embedding. IEEE Access 8, 10503–10515 (2020)

    Article  Google Scholar 

  16. Li, M.M., Peters, C., Leimeister, J.M.: Designing a peer-based support system to support shakedown. In: International Conference on Information Systems (2017)

    Google Scholar 

  17. Liu, J., Cao, Y., Lin, C.-Y., et al.: Low-quality product review detection in opinion summarization. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 334–342 (2007)

    Google Scholar 

  18. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  19. McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommend 10 (2004)

    Google Scholar 

  20. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1, 4–12 (2015). https://doi.org/10.1145/2757001.2757003

    Article  Google Scholar 

  21. Otterbacher, J.: 'Helpfulness' in online communities. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 955–964 (2009)

    Google Scholar 

  22. Patil, S., Patil, Y.S.: A review on outsourcing with a special reference to telecom operations. Procedia. Soc. Behav. Sci. 133, 400–416 (2014)

    Article  Google Scholar 

  23. Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  24. Peffers, K., Rothenberger, M., Tuunanen, T., et al.: Design science research evaluation. In: International Conference on Design Science Research in Information Systems, pp. 398–410 (2012)

    Google Scholar 

  25. Pembeci, İ: Using word embeddings for ontology enrichment. Int. J. Intell. Syst. Appl. Eng. 4, 49–56 (2016). https://doi.org/10.18201/ijisae.58806

    Article  Google Scholar 

  26. Qi, P., Zhang, Y., Zhang, Y., et al.: Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. arXiv preprint arXiv:2003.07082 (2020)

  27. Radim, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50 (2010)

    Google Scholar 

  28. Rajman, M., Besançon, R.: Text mining: natural language techniques and text mining applications. In: Spaccapietra, S., Maryanski, F. (eds.) Data Mining and Reverse Engineering. ITIFIP, pp. 50–64. Springer, Boston, MA (1998). https://doi.org/10.1007/978-0-387-35300-5_3

    Chapter  MATH  Google Scholar 

  29. Rhyn, M., Blohm, I.: A machine learning approach for classifying textual data in crowdsourcing. In: Wirtschaftsinformatik 2017 Proceedings (2017)

    Google Scholar 

  30. Roshdi, A., Roohparvar, A.: Review: information retrieval techniques and applications. Int. J. Comput. Netw. Commun. Secur. 3, 373–377 (2015)

    Google Scholar 

  31. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using natural language processing. In: International Conference on Software Engineering, pp. 499–510 (2007)

    Google Scholar 

  32. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Comput. Surv. 42, 1–42 (2010). https://doi.org/10.1145/1670679.1670680

    Article  Google Scholar 

  33. Shanavas, N., Asokan, S.: Ontology-based document mining system for IT support service. Procedia Comput. Sci. 46, 329–336 (2015). https://doi.org/10.1016/j.procs.2015.02.028

    Article  Google Scholar 

  34. Srividhya, V., Anitha, R.: Evaluating preprocessing techniques in text categorization. Int. J. Comput. Sci. Appl. 47, 49–51 (2010)

    Google Scholar 

  35. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016). https://doi.org/10.1057/ejis.2014.36

    Article  Google Scholar 

  36. Xu, H., Zhang, N., Zhou, L.: Validity concerns in research using organic data. J. Manag. 46, 1257–1274 (2020). https://doi.org/10.1177/0149206319862027

    Article  Google Scholar 

  37. Yedida, R., Yang, X., Menzies, T.: When SIMPLE is better than complex: a case study on deep learning for predicting Bugzilla issue close time. arXiv preprint arXiv:2101.06319v1 (2021)

  38. Zhou, W., Tang, L., Zeng, C., et al.: Resolution recommendation for event tickets in service management. IEEE Trans. Netw. Serv. Manage. 13, 954–967 (2016). https://doi.org/10.1109/TNSM.2016.2587807

    Article  Google Scholar 

  39. Zhou, W., Xue, W., Baral, R., et al.: STAR: a system for ticket analysis and resolution. In: Proceedings of the 23rd ACM, pp. 2181–2190. https://doi.org/10.1145/3097983.3098190 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon L. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmidt, S.L., Li, M.M., Weigel, S., Peters, C. (2021). Knowledge is Power: Provide Your IT-Support with Domain-Specific High-Quality Solution Material. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds) The Next Wave of Sociotechnical Design. DESRIST 2021. Lecture Notes in Computer Science(), vol 12807. Springer, Cham. https://doi.org/10.1007/978-3-030-82405-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82405-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82404-4

  • Online ISBN: 978-3-030-82405-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics