Skip to main content

New Fields of Research in Celiac Disease

  • Chapter
  • First Online:
Advances in Celiac Disease

Abstract

This chapter provides a focused look at research priorities in celiac disease (CD) that are also embedded in the various chapters of this book. These include an overview of the main current research fields and challenges in understanding and managing CD, covering mechanisms underlying CD pathogenesis, new tools in diagnosis and management, maintaining gluten free diet and therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, et al. Gliadin-specific, HLA-DQ (alpha 1*0501, beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med. 1993;178(1):187–96.

    Article  PubMed  CAS  Google Scholar 

  2. Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169(1):345–50.

    Article  PubMed  CAS  Google Scholar 

  3. Lionetti E, Catassi C. Co-localization of gluten consumption and HLA-DQ2 and -DQ8 genotypes, a clue to the history of celiac disease. Dig Liver Dis. 2014;46(12):1057–63.

    Article  PubMed  CAS  Google Scholar 

  4. Liu E, Lee H-S, Aronsson CA, Hagopian WA, Koletzko S, Rewers MJ, et al. Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med. 2014;371(1):42–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014;371(14):1295–303.

    Article  PubMed  CAS  Google Scholar 

  6. Karinen H, Kärkkäinen P, Pihlajamäki J, Janatuinen E, Heikkinen M, Julkunen R, et al. Gene dose effect of the DQB1*0201 allele contributes to severity of coeliac disease. Scand J Gastroenterol. 2006;41(2):191–9.

    Article  PubMed  CAS  Google Scholar 

  7. Kuja-Halkola R, Lebwohl B, Halfvarson J, Wijmenga C, Magnusson PKE, Ludvigsson JF. Heritability of non-HLA genetics in coeliac disease: a population-based study in 107 000 twins. Gut. 2016;65(11):1793–8.

    Article  PubMed  Google Scholar 

  8. Sallese M, Lopetuso LR, Efthymakis K, Neri M. Beyond the HLA genes in gluten-related disorders. Front Nutr. 2020;7:575844.

    Google Scholar 

  9. Sharma A, Liu X, Hadley D, Hagopian W, Liu E, Chen WM, et al. Identification of non-HLA genes associated with celiac disease and country-specific differences in a large, international pediatric cohort. PLoS One. 2016;11(3):e0152476.

    Google Scholar 

  10. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359(26):2767–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhernakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen EA, Franke L, et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 2011;7(2):e1002004.

    Google Scholar 

  12. Östensson M, Montén C, Bacelis J, Gudjonsdottir AH, Adamovic S, Ek J, et al. A possible mechanism behind autoimmune disorders discovered by genome-wide linkage and association analysis in celiac disease. PLoS One. 2013;8(8):e70174.

    Google Scholar 

  13. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, et al. A long noncoding RNA associated with susceptibility to celiac disease. Science. 2016;352(6281):91–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sharp SA, Jones SE, Kimmitt RA, Weedon MN, Halpin AM, Wood AR, et al. A single nucleotide polymorphism genetic risk score to aid diagnosis of coeliac disease: a pilot study in clinical care. Aliment Pharmacol Ther. 2020;52(7):1165–73.

    PubMed  CAS  Google Scholar 

  16. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 2010;2(41):41ra51.

    Google Scholar 

  17. Hmida NB, Ben Ahmed M, Moussa A, Rejeb MB, Said Y, Kourda N, et al. Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gastroenterol. 2012;107(4):604–11.

    Article  PubMed  CAS  Google Scholar 

  18. Cook L, Munier CML, Seddiki N, van Bockel D, Ontiveros N, Hardy MY, et al. Circulating gluten-specific FOXP3(+)CD39(+) regulatory T cells have impaired suppressive function in patients with celiac disease. J Allergy Clin Immunol. 2017;140(6):1592-603.e8.

    Article  PubMed  CAS  Google Scholar 

  19. Quinn EM, Coleman C, Molloy B, Dominguez Castro P, Cormican P, Trimble V, et al. Transcriptome analysis of CD4+ T cells in coeliac disease reveals imprint of BACH2 and IFNγ regulation. PLoS One. 2015;10(10):e0140049.

    Google Scholar 

  20. McLean MH, Dieguez D Jr, Miller LM, Young HA. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut. 2015;64(2):332–41.

    Article  PubMed  CAS  Google Scholar 

  21. Nadal I, Donant E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56(Pt 12):1669–74.

    Google Scholar 

  22. Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi MP, et al. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. 2010;10:175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;8:232.

    Google Scholar 

  24. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63.

    Google Scholar 

  25. Sanz Y, Palma GD, Laparra M. Unraveling the ties between celiac disease and intestinal microbiota. Int Rev Immunol. 2011;30(4):207–18.

    Article  PubMed  Google Scholar 

  26. Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64(3):406–17.

    Article  PubMed  CAS  Google Scholar 

  27. Di Biase AR, Marasco G, Ravaioli F, Dajti E, Colecchia L, Righi B, et al. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. J Gastroenterol Hepatol. 2021;36(2):446–54.

    Article  PubMed  Google Scholar 

  28. Schiepatti A, Bacchi S, Biagi F, Panelli S, Betti E, Corazza GR, et al. Relationship between duodenal microbiota composition, clinical features at diagnosis, and persistent symptoms in adult Coeliac disease. Dig Liver Dis. 2021.

    Google Scholar 

  29. Leonard MM, Camhi S, Huedo-Medina TB, Fasano A. Celiac Disease Genomic, Environmental, Microbiome, and Metabolomic (CDGEMM) study design: approach to the future of personalized prevention of celiac disease. Nutrients. 2015;7(11):9325–36.

    Google Scholar 

  30. Marasco G, Cirota GG, Rossini B, Lungaro L, Di Biase AR, Colecchia A, et al. Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients. 2020;12(9).

    Google Scholar 

  31. Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014;112(1):30–40.

    Article  PubMed  CAS  Google Scholar 

  32. Klemenak M, Dolinšek J, Langerholc T, Di Gioia D, Mičetić-Turk D. Administration of bifidobacterium breve decreases the production of TNF-α in children with celiac disease. Dig Dis Sci. 2015;60(11):3386–92.

    Google Scholar 

  33. Smecuol E, Constante M, Temprano MP, Costa AF, Moreno ML, Pinto-Sanchez MI, et al. Effect of Bifidobacterium infantis NLS super strain in symptomatic coeliac disease patients on long-term gluten-free diet—an exploratory study. Benef Microbes. 2020;11(6):527–34.

    Google Scholar 

  34. Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of lactobacillus plantarum and lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11(8).

    Google Scholar 

  35. Al-Toma A, Volta U, Auricchio R, Castillejo G, Sanders DS, Cellier C, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur Gastroenterol J. 2019;7(5):583–613.

    Google Scholar 

  36. Bai JC, Ciacci C. World gastroenterology organisation global guidelines: celiac disease february 2017. J Clin Gastroenterol. 2017;51(9):755–68.

    Article  PubMed  Google Scholar 

  37. Husby S, Koletzko S, Korponay-Szabó I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European society paediatric gastroenterology, hepatology and nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr. 2020;70(1):141–56.

    Google Scholar 

  38. Ramírez-Sánchez AD, Tan IL, Gonera-de Jong BC, Visschedijk MC, Jonkers I, Withoff S. Molecular biomarkers for celiac disease: past, present and future. Int J Mol Sci. 2020;21(22).

    Google Scholar 

  39. Christophersen A, Ráki M, Bergseng E, Lundin KE, Jahnsen J, Sollid LM, et al. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United Eur Gastroenterol J. 2014;2(4):268–78.

    Article  CAS  Google Scholar 

  40. Sarna VK, Lundin KEA, Mørkrid L, Qiao SW, Sollid LM, Christophersen A. HLA-DQ-gluten tetramer blood test accurately identifies patients with and without celiac disease in absence of gluten consumption. Gastroenterology. 2018;154(4):886-96.e6.

    Article  PubMed  Google Scholar 

  41. Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX, Thompson A, et al. Determinants of gliadin-specific T cell selection in celiac disease. J Immunol. 2015;194(12):6112–22.

    Google Scholar 

  42. Brottveit M, Ráki M, Bergseng E, Fallang LE, Simonsen B, Løvik A, et al. Assessing possible celiac disease by an HLA-DQ2-gliadin tetramer test. Am J Gastroenterol. 2011;106(7):1318–24.

    Article  PubMed  CAS  Google Scholar 

  43. Sarna VK, Skodje GI, Reims HM, Risnes LF, Dahal-Koirala S, Sollid LM, et al. HLA-DQ: gluten tetramer test in blood gives better detection of coeliac patients than biopsy after 14-day gluten challenge. Gut. 2018;67(9):1606–13.

    Google Scholar 

  44. Singh A, Verma AK, Das P, Prakash S, Pramanik R, Nayak B, et al. Non-immunological biomarkers for assessment of villous abnormalities in patients with celiac disease. J Gastroenterol Hepatol. 2020;35(3):438–45.

    Article  PubMed  CAS  Google Scholar 

  45. Ioannou HP, Fotoulaki M, Pavlitou A, Efstratiou I, Augoustides-Savvopoulou P. Plasma citrulline levels in paediatric patients with celiac disease and the effect of a gluten-free diet. Eur J Gastroenterol Hepatol. 2011;23(3):245–9.

    Google Scholar 

  46. Adriaanse MPM, Mubarak A, Riedl RG, Ten Kate FJW, Damoiseaux J, Buurman WA, et al. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci Rep. 2017;7(1):8671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Adriaanse MP, Leffler DA, Kelly CP, Schuppan D, Najarian RM, Goldsmith JD, et al. Serum I-FABP detects gluten responsiveness in adult celiac disease patients on a short-term gluten challenge. Am J Gastroenterol. 2016;111(7):1014–22.

    Article  PubMed  CAS  Google Scholar 

  48. Oldenburger IB, Wolters VM, Kardol-Hoefnagel T, Houwen RHJ, Otten HG. Serum intestinal fatty acid-binding protein in the noninvasive diagnosis of celiac disease. Apmis. 2018;126(3):186–90.

    Google Scholar 

  49. Manavalan JS, Hernandez L, Shah JG, Konikkara J, Naiyer AJ, Lee AR, et al. Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol. 2010;71(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  50. Masaebi F, Azizmohammad Looha M, Rostami-Nejad M, Pourhoseingholi MA, Mohseni N, Samasca G, et al. The predictive value of serum cytokines for distinguishing celiac disease from non-celiac gluten sensitivity and healthy subjects. Iran Biomed J. 2020;24(6):340–6.

    Google Scholar 

  51. Iervasi E, Auricchio R, Strangio A, Greco L, Saverino D. Serum IL-21 levels from celiac disease patients correlates with anti-tTG IgA autoantibodies and mucosal damage. Autoimmunity. 2020;53(4):225–30.

    Article  PubMed  CAS  Google Scholar 

  52. Amr KS, Bayoumi FS, Eissa E, Abu-Zekry M. Circulating microRNAs as potential non-invasive biomarkers in pediatric patients with celiac disease. Eur Ann Allergy Clin Immunol. 2019;51(4):159–64.

    Google Scholar 

  53. Bascuñán KA, Pérez-Bravo F, Gaudioso G, Vaira V, Roncoroni L, Elli L, et al. A miRNA-based blood and mucosal approach for detecting and monitoring celiac disease. Dig Dis Sci. 2020;65(7):1982–91.

    Google Scholar 

  54. Villafuerte-Galvez J, Vanga RR, Dennis M, Hansen J, Leffler DA, Kelly CP, et al. Factors governing long-term adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacol Ther. 2015;42(6):753–60.

    Google Scholar 

  55. Myléus A, Reilly NR, Green PHR. Rate, risk factors, and outcomes of nonadherence in pediatric patients with celiac disease: a systematic review. Clin Gastroenterol Hepatol. 2020;18(3):562–73.

    Article  PubMed  Google Scholar 

  56. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr. 2007;85(1):160–6.

    Article  PubMed  CAS  Google Scholar 

  57. Akobeng AK, Thomas AG. Systematic review: tolerable amount of gluten for people with coeliac disease. Aliment Pharmacol Ther. 2008;27(11):1044–52.

    Article  PubMed  CAS  Google Scholar 

  58. Leonard MM, Silvester JA, Leffler D, Fasano A, Kelly CP, Lewis SK, et al. Evaluating responses to gluten challenge: a randomized, double-blind, 2-dose gluten challenge trial. Gastroenterology. 2021;160(3):720-33.e8.

    Article  PubMed  CAS  Google Scholar 

  59. Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology. 2017;153(3):689-701.e1.

    Article  PubMed  Google Scholar 

  60. Comino I, Real A, Vivas S, Síglez M, Caminero A, Nistal E, et al. Monitoring of gluten-free diet compliance in celiac patients by assessment of gliadin 33-mer equivalent epitopes in feces. Am J Clin Nutr. 2012;95(3):670–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Comino I, Fernández-Bañares F, Esteve M, Ortigosa L, Castillejo G, Fambuena B, et al. Fecal gluten peptides reveal limitations of serological tests and food questionnaires for monitoring gluten-free diet in celiac disease patients. Am J Gastroenterol. 2016;111(10):1456–65.

    Google Scholar 

  62. Gerasimidis K, Zafeiropoulou K, Mackinder M, Ijaz UZ, Duncan H, Buchanan E, et al. Comparison of clinical methods with the faecal gluten immunogenic peptide to assess gluten intake in coeliac disease. J Pediatr Gastroenterol Nutr. 2018;67(3):356–60.

    Article  PubMed  CAS  Google Scholar 

  63. Moreno ML, Sánchez-Muñoz D, Sanders D, Rodríguez-Herrera A, Sousa C. Verifying diagnosis of refractory celiac disease with urine gluten immunogenic peptides as biomarker. Front Med (Lausanne). 2020;7:601854.

    Google Scholar 

  64. Roca M, Donat E, Masip E, Crespo-Escobar P, Cañada-Martínez AJ, Polo B, et al. Analysis of gluten immunogenic peptides in feces to assess adherence to the gluten-free diet in pediatric celiac patients. Eur J Nutr. 2020.

    Google Scholar 

  65. Stefanolo JP, Tálamo M, Dodds S, de la Paz TM, Costa AF, Moreno ML, et al. Real-world gluten exposure in patients with celiac disease on gluten-free diets, determined from gliadin immunogenic peptides in urine and fecal samples. Clin Gastroenterol Hepatol. 2021;19(3):484-91.e1.

    Article  PubMed  CAS  Google Scholar 

  66. van den Broeck HC, van Herpen TW, Schuit C, Salentijn EM, Dekking L, Bosch D, et al. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol. 2009;9:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Carroccio A, Di Prima L, Noto D, Fayer F, Ambrosiano G, Villanacci V, et al. Searching for wheat plants with low toxicity in celiac disease: between direct toxicity and immunologic activation. Dig Liver Dis. 2011;43(1):34–9.

    Article  PubMed  Google Scholar 

  68. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403).

    Google Scholar 

  69. Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol. 2011;9(1):24–9.

    Article  PubMed  Google Scholar 

  70. Rees D, Holtrop G, Chope G, Moar KM, Cruickshank M, Hoggard N. A randomised, double-blind, cross-over trial to evaluate bread, in which gluten has been pre-digested by prolyl endoprotease treatment, in subjects self-reporting benefits of adopting a gluten-free or low-gluten diet. Br J Nutr. 2018;119(5):496–506.

    Article  PubMed  CAS  Google Scholar 

  71. Liu YY, Lee CC, Hsu JH, Leu WM, Meng M. Efficient hydrolysis of gluten-derived celiac disease-triggering immunogenic peptides by a bacterial serine protease from burkholderia gladioli. Biomolecules. 2021;11(3).

    Google Scholar 

  72. Lamacchia C, Landriscina L, D’Agnello P. Changes in wheat kernel proteins induced by microwave treatment. Food Chem. 2016;197(Pt A):634–40.

    Article  PubMed  CAS  Google Scholar 

  73. Gianfrani C, Mamone G, la Gatta B, Camarca A, Di Stasio L, Maurano F, et al. Microwave-based treatments of wheat kernels do not abolish gluten epitopes implicated in celiac disease. Food Chem Toxicol. 2017;101:105–13.

    Article  PubMed  CAS  Google Scholar 

  74. Marino M, Casale R, Borghini R, Di Nardi S, Donato G, Angeloni A, et al. The effects of modified versus unmodified wheat gluten administration in patients with celiac disease. Int Immunopharmacol. 2017;47:1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Guz-Mark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guz-Mark, A., Shamir, R. (2022). New Fields of Research in Celiac Disease. In: Amil-Dias, J., Polanco, I. (eds) Advances in Celiac Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-82401-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82401-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82400-6

  • Online ISBN: 978-3-030-82401-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics