Skip to main content

New Therapeutic Strategies in Celiac Disease

  • Chapter
  • First Online:
Advances in Celiac Disease

Abstract

A life-long exclusion of gluten from the daily diet is, to date, the consolidated therapy for celiac disease. A strict gluten free diet is, however, difficult to be followed, in particular during social events and travelling and among the adolescents, whose compliance is less satisfactory. Furthermore, the widespread use of gluten as additive in food industries is frequently responsible of meal contamination and inadvertent gluten exposure. To find an alternative to the gluten-free diet, several researches are currently focused to prevent the inflammatory cascade activated by gluten in celiac disease patients. The strategies aim to reduce the load of gluten immunotoxic sequences in the luminal tract, or to restore oral tolerance through monoclonal antibodies against inflammatory cytokines and T cells, and immunomodulatory drugs. This article will examine the state-of-the-art of various therapeutic strategies that are currently under investigation, reviewing those that are either at proof-of-principle status or already tested in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherf KA, Catassi C, Chirdo F, Ciclitira PJ, Feighery C, Gianfrani C, Koning F, Lundin KEA, et al. Recent progress and recommendations on celiac disease from the working group on prolamin analysis and toxity. Front Nutr. 2020. https://doi.org/10.3389/fnut.2020.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rubin ES, Crowe SE. Celiac disease. Ann Intern Med. 2020. https://doi.org/10.7326/AITC202001070.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Volta U, Caio G, Ghirardi C, Lungaro L, Mansueto P, Carroccio A, De Giorgio R. Minimal lesions of the small intestinal mucosa: more than morphology. Dig Dis Sci. 2020. https://doi.org/10.1007/s10620-020-06571-1.

    Article  PubMed  Google Scholar 

  4. McAllister BP, Williams E, Clarke K. A comprehensive review of celiac disease/gluten-sensitive enteropathies. Clin Rev Allergy Immunol. 2019. https://doi.org/10.1007/s12016-018-8691-2.

    Article  PubMed  Google Scholar 

  5. Jabri B, Sollid LM. T Cells in celiac disease. J Immunol. 2017. https://doi.org/10.4049/jimmunol.1601693.

    Article  PubMed  Google Scholar 

  6. Sollid LM. Molecular basis of coeliac disease. Ann Rev Immunol. 2000. https://doi.org/10.1146/annurev.immunol.18.1.53.

    Article  Google Scholar 

  7. Dunne MR, Byrne G, Chirdo FG, Feighery C. Coeliac disease pathogenesis: the uncertainties of a well-known immune mediated disorder. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01374.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012. https://doi.org/10.1007/s00251-012-0599-z.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannering SI, et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 2010. https://doi.org/10.1126/scitranslmed.3001012.

    Article  PubMed  Google Scholar 

  10. Camarca A, Auricchio R, Picascia S, Fierro O, Maglio M, Miele E, Malamisura B, Greco L, et al. Gliadin-reactive T cells in Italian children from PreventCD cohort at high risk for celiac disease. Pediatr Allergy Immunol. 2017. https://doi.org/10.1111/pai.12720.

    Article  PubMed  Google Scholar 

  11. Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol. 2009. https://doi.org/10.1038/nri2670.

    Article  PubMed  Google Scholar 

  12. Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology. 2015. https://doi.org/10.1053/j.gastro.2015.05.013.

    Article  PubMed  Google Scholar 

  13. Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, Voisine J, Discepolo V, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020. https://doi.org/10.1038/s41586-020-2003-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, Kim SM, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017. https://doi.org/10.1126/science.aah5298.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C. Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients. 2014. https://doi.org/10.3390/nu6020575.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gianfrani C, Camarca A, Mazzarella G, Di Stasio L, Rotondi Aufiero V, Giardullo N, Ferranti P, Picariello G, et al. Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: implication for celiac disease. Mol Nutr Food Res. 2015. https://doi.org/10.1002/mnfr.201500126.

    Article  PubMed  Google Scholar 

  17. Marciniak M, Szymczak-Tomczak A, Mahadea D, Eder P, Dobrowolska A, Krela-Kaźmierczak I. Multidimensional disadvantages of a gluten-free diet in celiac disease: a narrative review. Nutrients. 2021. https://doi.org/10.3390/nu13020643.

  18. Hujoel IA, Murray JA. Refractory celiac disease. Curr Gastroenterol Rep. 2020. https://doi.org/10.1007/s11894-020-0756-8.

    Article  PubMed  Google Scholar 

  19. Kivelä L, Caminero A, Leffler DA, Pinto-Sanchez MI, Tye-Din JA, Lindfors K. Current and emerging therapies for coeliac disease. Nat Rev Gastroenterol Hepatol. 2021. https://doi.org/10.1038/s41575-020-00378-1.

    Article  PubMed  Google Scholar 

  20. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, et al. Higly efficient gluten degradation by lactobacilli and fungal proteases durino food processing: new perspectives for celiac disease. Appl Environ Microbiol. 2007. https://doi.org/10.1128/AEM.00260-07.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, Di Cagno R, De Angelis M, et al. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol. 2011. https://doi.org/10.1016/j.cgh.2010.09.025.

  22. Zhou L, Kooy-Winkelaar YMC, Cordfunke RA, Dragan I, Thompson A, Drijfhout JW, van Veelen PA, Chen H, Frits Koning. Abrogation of immunogenic properties of gliadin peptides through transamidation by microbial transglutaminase is acyl-acceptor dependent. J Agric Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b0255

  23. Gianfrani C, Siciliano R, Facchiano A, Camarca A, Mazzeo M, Costantini S, Salvati V, Maurano F, et al. Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology. 2007. https://doi.org/10.1053/j.gastro.2007.06.023.

    Article  PubMed  Google Scholar 

  24. Mazzarella G, Salvati VM, Iaquinto G, Stefanile R, Capobianco F, Luongo D, Bergamo P, Maurano F, et al. Reintroduction of gluten following flour transamidation in adult celiac patients: a randomized, controlled clinical study. Clin Dev Immunol. 2012. https://doi.org/10.1155/2012/329150.

  25. Marino M, Casale R, Borghini R, Di Nardi S, Donato G, Angeloni A, Moscaritolo S, Grasso L, et al. The effects of modified versus unmodified wheat gluten administration in patients with celiac disease. Int Immunopharmacol. 2017. https://doi.org/10.1016/j.intimp.2017.03.012.

    Article  PubMed  Google Scholar 

  26. Ribeiro M, Picascia S, Rhazi L, Gianfrani C, Carrillo JM, Rodriguez-Quijano M, Branlard G, Nunes FM. In Situ Gluten-Chitosan interlocked self-assembled supramolecular architecture reduces T-cell-mediated immune response to Gluten in celiac disease. Mol Nutr Food Res. 2018. https://doi.org/10.1002/mnfr.201800646.

    Article  PubMed  Google Scholar 

  27. Sample DA, Sunwoo HH, Huynh HQ, Rylance HL, Robert CL, Xu BW, Kang SH, Gujral N, et al. AGY, a novel egg yolk-derived anti-gliadin antibody, is safe for patients with celiac disease. Dig Dis Sci. 2017. https://doi.org/10.1007/s10620-016-4426-5.

    Article  PubMed  Google Scholar 

  28. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C. Structural basis for gluten intolerance in celiac sprue. Science. 2002. https://doi.org/10.1126/science.107412.

    Article  PubMed  Google Scholar 

  29. Wei G, Helmerhorst EJ, Darwish G, Blumenkranz G, Schuppan D. Gluten degrading enzymes for treatment of celiac disease. Nutrients. 2020. https://doi.org/10.3390/nu12072095.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bethune MT, Khosla C. Oral enzyme therapy for celiac sprue. Methods Enzymol. 2012. https://doi.org/10.1016/B978-0-12-416039-2.00013-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gass J, Bethune MT, Siegel M, Spencer A, Khosla C. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology. 2007. https://doi.org/10.1053/j.gastro.2007.05.028.

    Article  PubMed  Google Scholar 

  32. Siegel M, Garber ME, Spencer AG, Botwick W, Kumar P, Williams RN, Kozuka K, Shreeniwas R, et al. Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci. 2012. https://doi.org/10.1007/s10620-011-1906-5.

    Article  PubMed  Google Scholar 

  33. Lähdeaho ML, Kaukien K, Laurila K, Vuotikka P, Koivurova OP, Karja-Lahdensuu T, Marcantonio A, Adelman DC, et al. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology. 2014. https://doi.org/10.1053/j.gastro.2014.02.031.

    Article  PubMed  Google Scholar 

  34. Murray J, Kelly CP, Green PHR, Marcantonio A, Wu T-T, Mäki M, Adelman DC, CeliAction Study Group of Investigators. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology. 2017. https://doi.org/10.1053/j.gastro.2016.11.004.

  35. Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig Dis Sci. 2017. https://doi.org/10.1007/s10620-017-4687-7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mitea C, Havenaar R, Drijfhout JW, Edens L, Dekking L, Koning F. Efficient degradation of gluten by a prolyl endopeptidase in a gastrointestinal model: implications for celiac disease. Gut. 2008. https://doi.org/10.1136/gut.2006.111609.

    Article  PubMed  Google Scholar 

  37. Salden BN, Monserrat V, Troost FJ, Bruins MJ, Edens L, Bartholomé R, Haenen GR, Winkens B, Koning F, Masclee AA. Randomised clinical study: aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment Pharmacol Ther. 2015. https://doi.org/10.1111/apt.13266.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tack GJ, van de Water JM, Bruins MJ, Kooy-Winkelaar EM, van Bergen J, Bonnet P, Vreugdenhil AC, Korponay-Szabo I et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol. 2013. https://doi.org/10.3748/wjg.v19.i35.5837.

  39. Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, Guan R, Montelione G, et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J Am Chem Soc. 2015. https://doi.org/10.1021/jacs.5b08325.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pultz IS, Hill M, Vitanza JM, Wolf C, Saaby L, Liu T, Winkle P, Leffler DA. Gluten degradation, pharmacokinetics, safety, and tolerability of TAK-062, an engineered enzyme to treat celiac disease. Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.03.019.

    Article  PubMed  Google Scholar 

  41. Cavaletti L, Taravella A, Carrano L, Carenzi G, Sigutrà A, Solinas N, De Caro S, Di Stasio L, et al. E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-48299-7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schulzke JD, Bentzel CJ, Schulzke I, Riecken EO, Fromm M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res. 1998. https://doi.org/10.1203/00006450-199804000-00001.

    Article  PubMed  Google Scholar 

  43. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000. https://doi.org/10.1016/S0140-6736(00)02169-3.

    Article  PubMed  Google Scholar 

  44. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008. https://doi.org/10.1053/j.gastro.2008.03.023.

    Article  PubMed  Google Scholar 

  45. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB. The safety, tolerance, pharmacodynamic effects of single doses of AT-1001 in celiac disease subjects: a proof of concept study. Alimen Pharmacol Ther. 2007. https://doi.org/10.1111/j.1365-2036.2007.03413.x.

    Article  Google Scholar 

  46. Kelly CP, Green PH, Murray JA, Dimarino A, Colatrella A, Leffler DA, Alexander T, Arsenescu R, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Alimen Pharmacol Ther. 2013. https://doi.org/10.1111/apt.12147.

    Article  Google Scholar 

  47. Leffler DA, Kelly CP, Abdallah HZ, Colatrella AM, Harris LA, Leon F, Arterburn LA, Paterson BM, et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol. 2012. https://doi.org/10.1038/ajg.2012.211.

  48. Leffler DA, Kelly CP, Green PH, Fedorak RN, Di Marino A, Perrow W, Rasmussen H, Wang C, et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. 2015. https://doi.org/10.1053/j.gastro.2015.02.008.

    Article  PubMed  Google Scholar 

  49. Sollid LM, Koning F. Lack of relationship of AT1001 to zonulin and prehaptoglobin-2: clinical implications. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-323829.

    Article  PubMed  Google Scholar 

  50. Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, Andersson LC, Leskinen K, et al. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology. 2020. https://doi.org/10.1053/j.gastro.2020.01.045.

    Article  PubMed  Google Scholar 

  51. Kelly CP, Murray JA, Leffler DA, Getts DR, Bledsoe AC, Smithson G, First MR, Morris A, et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind. Placebo-Controlled Study Gastroenterology. 2021. https://doi.org/10.1053/j.gastro.2021.03.014.

    Article  PubMed  Google Scholar 

  52. Goel G, King T, Daveson AJ, Andrews JM, Krishnarajah J, Krause R, Brown GJE, Fogel R, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017. https://doi.org/10.1016/S2468-1253(17)30110-3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Daveson AJM, Ee HC, Andrews JM, King T, Goldstein KE, Dzuris JL, MacDougall JA, Williams LJ, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a randomized, double-blind, placebo-controlled phase 1 study. EBioMedicine. 2017. https://doi.org/10.1016/j.ebiom.2017.11.018.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Truitt KE, Daveson AJM, Ee HC, Goel G, MacDougall J, Neff K, Anderson RP. Randomised clinical trial: a placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment Pharmacol Ther. 2019. https://doi.org/10.1111/apt.15435.

    Article  PubMed  Google Scholar 

  55. Ventura MA, Sajko K, Hils M, Pasternack R, Greinwald R, Tewes B, Schuppan D. Su1161 - The oral transglutaminase 2 (TG2) inhibitor Zed1227 blocks TG2 activity in a mouse model of intestinal Inflammation. Gastroenterology. 2018. https://doi.org/10.1016/S0016-5085(18)31861-4.

    Article  Google Scholar 

  56. Lähdeaho ML, Scheinin M, Vuotikka P, Taavela J, Popp A, Laukkarinen J, Koffert J, Koivurova OP, et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol Hepatol. 2019. https://doi.org/10.1016/S2468-1253(19)30264-X.

    Article  PubMed  Google Scholar 

  57. Cellier C, Bouma G, van Gils T, Khater S, Malamut G, Crespo L, Collin P, Green PHR, et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: a phase 2a, randomised, double-blind, placebocontrolled, parallel-group study. Lancet Gastroenterol Hepatol. 2019. https://doi.org/10.1016/S2468-1253(19)30265-1.

    Article  PubMed  Google Scholar 

  58. Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A, Pascoe A, Cooke S, Speare R, et al. Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0017366.

    Article  PubMed  PubMed Central  Google Scholar 

  59. McSorley HJ, Gaze S, Daveson J, Jones D, Anderson RP, Clouston A, Ruyssers NE, Speare R, et al. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0024092.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A, Ferreira I, Susianto A, et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol. 2015. https://doi.org/10.1016/j.jaci.2014.07.022.

    Article  PubMed  Google Scholar 

  61. McCarville JL, Dong J, Caminero A, Bermudez-Brito M, Jury J, Murray JA, Duboux S, Steinmann M, et al. A commensal Bifidobacterium longum strain prevents gluten-related immunopathology in mice through expression of a serine protease inhibitor. Appl Environ Microbiol. 2017. https://doi.org/10.1128/AEM.01323-17.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferrari E, Monzani R, Saverio V, Gagliardi M, Pańczyszyn E, Raia V, Villella VR, Bona G, et al. Probiotics supplements reduce ER stress and gut inflammation associated with gliadin intake in a mouse model of gluten sensitivity. Nutrients. 2021. https://doi.org/10.3390/nu13041221.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Biagioli M, Carino A, Di Giorgio C, Marchianò S, Bordoni M, Roselli R, Distrutti E, Fiorucci S, et al. Discovery of a novel multi-strains probiotic formulation with improved efficacy toward intestinal inflammation. Nutrients. 2020. https://doi.org/10.3390/nu12071945.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carino A, Di Giorgio C, Marchianò S, Bordoni M, Roselli R, Distrutti E, Fiorucci S. Nutrients. 2020. https://doi.org/10.3390/nu12071945.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Troncone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gianfrani, C., Vitale, S., Troncone, R. (2022). New Therapeutic Strategies in Celiac Disease. In: Amil-Dias, J., Polanco, I. (eds) Advances in Celiac Disease . Springer, Cham. https://doi.org/10.1007/978-3-030-82401-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82401-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82400-6

  • Online ISBN: 978-3-030-82401-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics