Skip to main content

Future Trends of PET/MR and Utility of AI in Multi-Modal Imaging

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Since the first clinical simultaneous positron emission tomography/magnetic resonance imaging (PET/MR) units were developed in 2010 as predominantly research tools, PET/MR has been frequently utilized in clinical practice for the evaluation of neurological diseases, including brain tumors, neurodegenerative disorders, and epilepsy as well as head and neck cancers. Compared to PET/CT, PET/MR has the inherent advantages of MRI, including superior tissue contrast, capability of multiparametric images, and lack of ionizing radiation. Also, a single-session PET/MR reduces the transportation time between examination rooms, and for pediatric patients, it reduces the risk of sedation. However, there are also several disadvantages when shifting from PET/CT to PET/MR as follows:

  1. 1.

    Scan time. Although PET/MR reduces the number of imaging sessions, the average scan time of PET/MR (~1 h) is longer than that of PET/CT (30 mins) leading to a higher chance of motion artifacts and requiring sedation in pediatric patients.

  2. 2.

    Quantitative accuracy. Quantitative accuracy in PET relies on accurate attenuation correction (AC) maps and motion correction. AC is known as a challenge in PET/MR because there is no direct relationship between the PET attenuation coefficients and the intensity of the MR signal contrary to PET/CT.

Here we address recent advances in PET/MR in the evaluation of several neurological disorders. First, we discuss how recent major technological advances and trends provide solutions to the above issues. Second, we discuss recent progresses of artificial intelligence (AI) in coping with two common challenges in multi-modal imaging research: missing data and representation of multi-modal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surti S, Karp JS. Current status of PET technology. In: Zhang J, Knopp MV, editors. Advances in PET: the latest in instrumentation, technology, and clinical practice. Cham: Springer International Publishing; 2020. p. 3–14.

    Chapter  Google Scholar 

  2. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan H, Gu Y, Yu H, Hu P, Zhang Y, Mao W, et al. Total-body PET/CT: current applications and future perspectives. AJR Am J Roentgenol. 2020;215(2):325–37.

    Google Scholar 

  4. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ordonez AA, Sellmyer MA, Gowrishankar G, Ruiz-Bedoya CA, Tucker EW, Palestro CJ, et al. Molecular imaging of bacterial infections: overcoming the barriers to clinical translation. Sci Transl Med. 2019;11(508):eaax8251.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dubroff JG, Doot RK, Falcone M, Schnoll RA, Ray R, Tyndale RF, et al. Decreased nicotinic receptor availability in smokers with slow rates of nicotine metabolism. J Nucl Med. 2015;56(11):1724–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and neurodegenerative diseases: the role of PET and MR imaging. Front Cell Neurosci. 2020;14:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. 2016;3(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamaguchi S, Wagatsuma K, Miwa K, Ishii K, Inoue K, Fukushi M. Bayesian penalized-likelihood reconstruction algorithm suppresses edge artifacts in PET reconstruction based on point-spread-function. Phys Med. 2018;47:73–9.

    Article  PubMed  Google Scholar 

  10. Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA. 2016;29(1):75–87.

    Article  PubMed  Google Scholar 

  11. Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):245–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sekine T, Buck A, Delso G, Ter Voert EE, Huellner M, Veit-Haibach P, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  13. Sekine T, Ter Voert EE, Warnock G, Buck A, Huellner M, Veit-Haibach P, et al. Clinical evaluation of zero-Echo-time attenuation correction for brain 18F-FDG PET/MRI: comparison with atlas attenuation correction. J Nucl Med. 2016;57(12):1927–32.

    Article  CAS  PubMed  Google Scholar 

  14. Wiesinger F, Bylund M, Yang J, Kaushik S, Shanbhag D, Ahn S, et al. Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning. Magn Reson Med. 2018;80(4):1440–51.

    Article  PubMed  Google Scholar 

  15. Mackewn JE, Stirling J, Jeljeli S, Gould SM, Johnstone RI, Merida I, et al. Practical issues and limitations of brain attenuation correction on a simultaneous PET-MR scanner. EJNMMI Phys. 2020;7(1):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inomata T, Watanuki S, Odagiri H, Nambu T, Karakatsanis NA, Ito H, et al. A systematic performance evaluation of head motion correction techniques for 3 commercial PET scanners using a reproducible experimental acquisition protocol. Ann Nucl Med. 2019;33(7):459–70.

    Article  CAS  PubMed  Google Scholar 

  17. Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52(1):154–61.

    Article  PubMed  Google Scholar 

  18. Gillman A, Smith J, Thomas P, Rose S, Dowson N. PET motion correction in context of integrated PET/MR: current techniques, limitations, and future projections. Med Phys. 2017;44(12):e430–e45.

    Article  PubMed  Google Scholar 

  19. Slipsager JM, Ellegaard AH, Glimberg SL, Paulsen RR, Tisdall MD, Wighton P, et al. Markerless motion tracking and correction for PET, MRI, and simultaneous PET/MRI. PLoS One. 2019;14(4):e0215524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kyme AZ, Aksoy M, Henry DL, Bammer R, Maclaren J. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application. Med Phys. 2020;47(8):3321–31.

    Article  PubMed  Google Scholar 

  21. Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2019;46(13):2700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q. Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol. 2018;63(12):125011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.

    Article  PubMed  Google Scholar 

  24. Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Shen D, Ma G, An L, Shi F, Zhang P, et al. Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans Biomed Eng. 2017;64(3):569–79.

    Article  PubMed  Google Scholar 

  26. Xu J, Gong E, Ouyang J, Pauly J, Zaharchuk G. Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information: SPIE; 2020.

    Google Scholar 

  27. Liu M, Zhang J, Yap PT, Shen D. View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal. 2017;36:123–34.

    Article  PubMed  Google Scholar 

  28. Parker R. Missing data problems in machine learning: VDM Verlag; 2010.

    Google Scholar 

  29. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27(4):685–91.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Zhang J, Adeli E, Shen D. Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal. 2018;43:157–68.

    Article  PubMed  Google Scholar 

  31. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu J-Y, Park T, Isola P, Efros AA, editors. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE; 2017.

    Google Scholar 

  33. Beckmann M, Lloyd AJ, Haldar S, Fave G, Seal CJ, Brandt K, et al. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proc Nutr Soc. 2013;72(3):352–61.

    Article  CAS  PubMed  Google Scholar 

  34. Krizhevsky A, Sutskever I, Hinton GE, editors. ImageNet classification with deep convolutional neural networks. NIPS; 2012.

    Google Scholar 

  35. Liu M, Zhang J, Nie D, Yap PT, Shen D. Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health Inform. 2018;22(5):1476–85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pan Y, Liu M, Lian C, Xia Y, Shen D. Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages. IEEE Trans Med Imaging; 2020.

    Google Scholar 

  37. Pan Y, Liu M, Lian C, Zhou T, Xia Y, Shen D, editors. Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. Cham: Springer International Publishing; 2018.

    Google Scholar 

  38. Lian C, Liu M, Zhang J, Shen D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI. IEEE Trans Pattern Anal Mach Intell. 2020;42(4):880–93.

    Article  PubMed  Google Scholar 

  39. Cheng B, Liu M, Zhang D, Munsell BC, Shen D. Domain transfer learning for MCI conversion prediction. IEEE Trans Biomed Eng. 2015;62(7):1805–17.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wachinger C, Salat DH, Weiner M, Reuter M. Alzheimer’s disease neuroimaging I. Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain. 2016;139(Pt 12):3253–66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang D, Shen D. Alzheimer’s disease neuroimaging I. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage. 2012;59(2):895–907.

    Article  PubMed  Google Scholar 

  42. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage. 2011;56(2):766–81.

    Article  PubMed  Google Scholar 

  43. Pan Y, Liu M, Lian C, Xia Y, Shen D, editors. Disease-image specific generative adversarial network for brain disease diagnosis with incomplete multi-modal neuroimages. Cham: Springer International Publishing; 2019.

    Google Scholar 

  44. Hore A, Ziou D, editors. Image quality metrics: PSNR vs. SSIM. IEEE; 2010.

    Google Scholar 

  45. Zhang J, Liu M, Pan Y, Shen D. Unsupervised conditional consensus adversarial network for brain disease identification with structural MRI. Cham: Springer International Publishing; 2019.

    Book  Google Scholar 

  46. Wang M, Zhang D, Huang J, Yap PT, Shen D, Liu M. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans Med Imaging. 2020;39(3):644–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Che Hung or Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hung, SC., Liu, M., Yap, PT., Shen, D., Lin, W., Castillo, M. (2022). Future Trends of PET/MR and Utility of AI in Multi-Modal Imaging. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics