Skip to main content

Traumatic Brain Injury and Chronic Traumatic Encephalopathy

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Traumatic brain injury (TBI) is a significant problem of public health, with potentially devastating consequences for the patients and their families and represents a substantial burden to healthcare and economic systems. Sometimes defined as “the most complex disease of the most complex organ,” TBI effects result mostly from traumatic injury to the neurons, triggering a sophisticated chain of molecular and metabolic neuronal changes, known as the neurometabolic cascade. Understanding the mechanisms of injury and the neurometabolic alterations that follow is essential to understand the structural, functional, and molecular neuroimaging findings. This chapter aims to provide an overview of physical and chemical mechanisms of neuronal injury, clinical features, and multimodal neuroimaging findings in acute and chronic phases of TBI and discuss chronic traumatic encephalopathy, a neurodegenerative disease related to repetitive TBI. Finally, we present some future perspectives in the field and discuss the role of PET/MR hybrid imaging and how it can improve patient care and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.

    Article  Google Scholar 

  2. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frieden TR, Houry D, Baldwin G, et al. Ctr Dis Control Prev.

    Google Scholar 

  4. Jordan BD. The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol. 2013;9(4):222–30.

    Article  CAS  PubMed  Google Scholar 

  5. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  6. Mild Traumatic Brain Injury Working Group. VA/DoD clinical practice guideline for the management of concussion-mild traumatic brain injury. 2016.

    Google Scholar 

  7. McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8.

    Article  PubMed  Google Scholar 

  8. Radhakrishnan R, Garakani A, Gross LS, et al. Neuropsychiatric aspects of concussion. Lancet Psychiatry. 2016;3(12):1166–75.

    Article  PubMed  Google Scholar 

  9. Blennow K, Brody DL, Kochanek PM, et al. Traumatic brain injuries. Nat Rev Dis Primers. 2016;2:16084.

    Article  PubMed  Google Scholar 

  10. McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2556–63.

    Article  CAS  PubMed  Google Scholar 

  11. Karr JE, Areshenkoff CN, Garcia-Barrera MA. The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology. 2014;28(3):321–36.

    Article  PubMed  Google Scholar 

  12. Meares S, Shores EA, Taylor AJ, et al. The prospective course of postconcussion syndrome: the role of mild traumatic brain injury. Neuropsychology. 2011;25(4):454–65.

    Article  PubMed  Google Scholar 

  13. Zuckerman SL, Lee YM, Odom MJ, Solomon GS, Forbes JA, Sills AK. Recovery from sports-related concussion: days to return to neurocognitive baseline in adolescents versus young adults. Surg Neurol Int. 2012;3:130.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McCREA M, Barr WB, Guskiewicz K, et al. Standard regression-based methods for measuring recovery after sport-related concussion. J Int Neuropsychol Soc. 2005;11(1):58–69.

    Article  PubMed  Google Scholar 

  15. Silverberg ND, Iverson GL. Etiology of the post-concussion syndrome: Physiogenesis and psychogenesis revisited. Neuro Rehabil. 2011;29(4):317–29.

    Google Scholar 

  16. Ponsford J, Cameron P, Fitzgerald M, Grant M, Mikocka-Walus A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J Neurotrauma. 2011;28(6):937–46.

    Article  PubMed  Google Scholar 

  17. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(Suppl 4):S24–33.

    Article  PubMed  Google Scholar 

  18. Slobounov S, Slobounov E, Sebastianelli W, Cao C, Newell K. Differential rate of recovery in athletes after first and second concussion episodes. Neurosurgery. 2007;61(2):338–44; discussion 344

    Article  PubMed  Google Scholar 

  19. Baugh CM, Stamm JM, Riley DO, et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 2012;6(2):244–54.

    Article  PubMed  Google Scholar 

  20. Mutch CA, Talbott JF, Gean A. Imaging evaluation of acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):409–39.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Connor KL, Rowson S, Duma SM, Broglio SP. Head-impact-measurement devices: a systematic review. J Athl Train. 2017;52(3):206–27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cloots RJH, Gervaise HMT, van Dommelen JAW, Geers MGD. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann Biomed Eng. 2008;36(7):1203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKee AC, Cairns NJ, Dickson DW, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  24. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil. 2005;20(1):76–94.

    Article  PubMed  Google Scholar 

  25. Stone JR, Singleton RH, Povlishock JT. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol. 2001;172(2):320–31.

    Article  CAS  PubMed  Google Scholar 

  26. Shitaka Y, Tran HT, Bennett RE, et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol. 2011;70(7):551–67.

    Article  PubMed  Google Scholar 

  27. Tran HT, Sanchez L, Brody DL. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol. 2012;71(2):116–29.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X-H, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165(2):357–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol. 2002;17(4):1137–52.

    CAS  PubMed  Google Scholar 

  30. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hunter LE, Freudenberg-Hua Y, Davies P, et al. Associations of apolipoprotein E ε4 genotype and ball heading with verbal memory in amateur soccer players. JAMA Neurol. 2020;77(4):419–26.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vasilevskaya A, Taghdiri F, Burke C, et al. Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. Neuroimage Clin. 2020;26:102212.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turk KW, Budson AE. Chronic traumatic encephalopathy. Continuum. 2019;25(1):187–207.

    PubMed  Google Scholar 

  34. McKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 2015;25(3):350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bieniek KF, Ross OA, Cormier KA, et al. Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol. 2015;130(6):877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43–64.

    Article  PubMed  Google Scholar 

  37. Montenigro PH, Baugh CM, Daneshvar DH, et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther. 2014;6(5):68.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carroll LJ, Cassidy JD, Cancelliere C, et al. Systematic review of the prognosis after mild traumatic brain injury in adults: cognitive, psychiatric, and mortality outcomes: results of the international collaboration on mild traumatic brain injury prognosis. Arch Phys Med Rehabil. 2014;95(3 Suppl):S152–73.

    Article  PubMed  Google Scholar 

  39. Yuh EL, Mukherjee P, Lingsma HF, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2013;73(2):224–35.

    Article  PubMed  Google Scholar 

  40. Smits M, Dippel DWJ, de Haan GG, et al. External validation of the Canadian CT head rule and the New Orleans criteria for CT scanning in patients with minor head injury. JAMA. 2005;294(12):1519–25.

    Article  CAS  PubMed  Google Scholar 

  41. Kuppermann N, Holmes JF, Dayan PS, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70.

    Article  PubMed  Google Scholar 

  42. Babl FE, Borland ML, Phillips N, et al. Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study. Lancet. 2017;389(10087):2393–402.

    Article  PubMed  Google Scholar 

  43. Stein SC, Fabbri A, Servadei F, Glick HA. A critical comparison of clinical decision instruments for computed tomographic scanning in mild closed traumatic brain injury in adolescents and adults. Ann Emerg Med. 2009;53(2):180–8.

    Article  PubMed  Google Scholar 

  44. Diaz-Arrastia R, Wang KKW, Papa L, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Undén L, Calcagnile O, Undén J, Reinstrup P, Bazarian J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med. 2015;13:292.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46(6):CP1–68.

    Google Scholar 

  47. Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12(6):557–63.

    Article  CAS  PubMed  Google Scholar 

  48. Koerte IK, Hufschmidt J, Muehlmann M, et al. Cavum septi pellucidi in symptomatic former professional football players. J Neurotrauma. 2016;33(4):346–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou Y, Kierans A, Kenul D, et al. Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology. 2013;267(3):880–90.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eierud C, Nathan DE, Bonavia GH, Ollinger J, Riedy G. Cortical thinning in military blast compared to non-blast persistent mild traumatic brain injuries. NeuroImage Ciln. 2019;22:101793.

    Article  Google Scholar 

  51. Govindarajan KA, Narayana PA, Hasan KM, et al. Cortical thickness in mild traumatic brain injury. J Neurotrauma. 2016;33(20):1809–17.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salat DH, Robinson ME, Miller DR, Clark DC, McGlinchey RE. Neuroimaging of deployment-associated traumatic brain injury (TBI) with a focus on mild TBI (mTBI) since 2009. Brain Inj. 2017;31(9):1204–19.

    Article  PubMed  Google Scholar 

  53. Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol. 2013;34(11):2064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Magnoni S, Mac Donald CL, Esparza TJ, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Main KL, Soman S, Pestilli F, et al. DTI measures identify mild and moderate TBI cases among patients with complex health problems: a receiver operating characteristic analysis of U.S. veterans. Neuroimage Clin. 2017;16:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gangolli M, Holleran L, Hee Kim J, et al. Quantitative validation of a nonlinear histology-MRI coregistration method using generalized Q-sampling imaging in complex human cortical white matter. NeuroImage. 2017;153:152–67.

    Article  PubMed  Google Scholar 

  57. Holleran L, Kim JH, Gangolli M, et al. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy. Acta Neuropathol. 2017;133(3):367–80.

    Article  PubMed  Google Scholar 

  58. Ruprecht R, Scheurer E, Lenz C. Systematic review on the characterization of chronic traumatic encephalopathy by MRI and MRS. J Magn Reson Imaging. 2019;49(1):212–28.

    Article  PubMed  Google Scholar 

  59. Croall I, Smith FE, Blamire AM. Magnetic resonance spectroscopy for traumatic brain injury. Top Magn Reson Imaging. 2015;24(5):267–74.

    Article  PubMed  Google Scholar 

  60. Brown M, Baradaran H, Christos PJ, Wright D, Gupta A, Tsiouris AJ. Magnetic resonance spectroscopy abnormalities in traumatic brain injury: a meta-analysis. J Neuroradiol. 2018;45(2):123–9.

    Article  PubMed  Google Scholar 

  61. Alosco ML, Jarnagin J, Rowland B, Liao H, Stern RA, Lin A. Magnetic resonance spectroscopy as a biomarker for chronic traumatic encephalopathy. Semin Neurol. 2017;37(5):503–9.

    Article  PubMed  Google Scholar 

  62. Medaglia JD. Functional neuroimaging in traumatic brain injury: from nodes to networks. Front Neurol. 2017;8:407.

    Article  PubMed  PubMed Central  Google Scholar 

  63. O’Neill TJ, Davenport EM, Murugesan G, Montillo A, Maldjian JA. Applications of resting state functional MR imaging to traumatic brain injury. Neuroimaging Clin N Am. 2017;27(4):685–96.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Johnson B, Neuberger T, Gay M, Hallett M, Slobounov S. Effects of subconcussive head trauma on the default mode network of the brain. J Neurotrauma. 2014;31(23):1907–13.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stevens MC, Lovejoy D, Kim J, Oakes H, Kureshi I, Witt ST. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):293–318.

    Article  PubMed  Google Scholar 

  66. Iraji A, Benson RR, Welch RD, et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J Neurotrauma. 2015;32(14):1031–45.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rigon A, Duff MC, McAuley E, Kramer AF, Voss MW. Is traumatic brain injury associated with reduced inter-hemispheric functional connectivity? A study of large-scale resting state networks following traumatic brain injury. J Neurotrauma. 2016;33(11):977–89.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shumskaya E, van Gerven MAJ, Norris DG, Vos PE, Kessels RPC. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury. Exp Brain Res. 2017;235(3):799–807.

    Article  PubMed  Google Scholar 

  69. Hillary FG. Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. J Int Neuropsychol Soc. 2008;14(4):526–34.

    Article  PubMed  Google Scholar 

  70. Scheibel RS, Newsome MR, Troyanskaya M, et al. Altered brain activation in military personnel with one or more traumatic brain injuries following blast. J Int Neuropsychol Soc. 2012;18(1):89–100.

    Article  PubMed  Google Scholar 

  71. Raji CA, Tarzwell R, Pavel D, et al. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One. 2014;9(3):e91088.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Raji CA, Henderson TA. PET and single-photon emission computed tomography in brain concussion. Neuroimaging Clin N Am. 2018;28(1):67–82.

    Article  PubMed  Google Scholar 

  73. Douglas DB, Chaudhari R, Zhao JM, et al. Perfusion imaging in acute traumatic brain injury. Neuroimaging Clin N Am. 2018;28(1):55–65.

    Article  PubMed  Google Scholar 

  74. Doshi H, Wiseman N, Liu J, et al. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One. 2015;10(2):e0118061.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ge Y, Patel MB, Chen Q, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj. 2009;23(7):666–74.

    Article  PubMed  Google Scholar 

  76. Kim J, Whyte J, Patel S, et al. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma. 2010;27(8):1399–411.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Garnett MR, Blamire AM, Corkill RG, et al. Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma. 2001;18(6):585–93.

    Article  CAS  PubMed  Google Scholar 

  78. Liu W, Wang B, Wolfowitz R, et al. Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR Biomed. 2013;26(6):651–63.

    Article  CAS  PubMed  Google Scholar 

  79. Diaz-Arrastia R, Kochanek PM, Bergold P, et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2014;31(2):135–58.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bergsneider M, Hovda DA, McArthur DL, et al. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil. 2001;16(2):135–48.

    Article  CAS  PubMed  Google Scholar 

  81. Byrnes KR, Wilson CM, Brabazon F, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg. 2014;5:13.

    Article  Google Scholar 

  82. Li J, Gu L, Feng D-F, Ding F, Zhu G, Rong J. Exploring temporospatial changes in glucose metabolic disorder, learning, and memory dysfunction in a rat model of diffuse axonal injury. J Neurotrauma. 2012;29(17):2635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: an (18)FDG PET study. J Neurotrauma. 2013;30(23):1943–53.

    Article  PubMed  Google Scholar 

  84. Annual Congress of the European Association of Nuclear Medicine October 13–17, 2018 Düsseldorf, Germany. Eur J Nucl Med Mol Imaging. 2018;45(Suppl 1):1–844.

    Google Scholar 

  85. Sparks P, Lawrence T, Hinze S. Neuroimaging in the diagnosis of chronic traumatic encephalopathy: a systematic review. Clin J Sport Med. 2017;30(Suppl 1):S1–S10.

    Google Scholar 

  86. Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;24(8):1112–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Small GW, Kepe V, Siddarth P, et al. PET scanning of brain tau in retired national football league players: preliminary findings. Am J Geriatr Psychiatry. 2013;21(2):138–44.

    Article  PubMed  Google Scholar 

  88. Barrio JR, Small GW, Wong K-P, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112(16):E2039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Robinson ME, McKee AC, Salat DH, et al. Positron emission tomography of tau in Iraq and Afghanistan veterans with blast neurotrauma. Neuroimage Clin. 2019;21:101651.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dickstein DL, De Gasperi R, Gama Sosa MA, et al. Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure. Mol Psychiatry. 2020.

    Google Scholar 

  91. Dickstein DL, Pullman MY, Fernandez C, et al. Cerebral [18 F]T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy. Transl Psychiatry. 2016;6(9):e900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stern RA, Adler CH, Chen K, et al. Tau positron-emission tomography in former National Football League Players. N Engl J Med. 2019;380(18):1716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mantyh WG, Spina S, Lee A, et al. Tau Positron Emission Tomographic Findings in a Former US Football Player With Pathologically Confirmed Chronic Traumatic Encephalopathy. JAMA Neurol. 2020.

    Google Scholar 

  94. Marquié M, Agüero C, Amaral AC, et al. [18F]-AV-1451 binding profile in chronic traumatic encephalopathy: a postmortem case series. Acta Neuropathol Commun. 2019;7(1):164.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Falcon B, Zivanov J, Zhang W, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568(7752):420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia C-F, Arteaga J, Chen G, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013;9(6):666–76.

    Article  PubMed  Google Scholar 

  97. Aguero C, Dhaynaut M, Normandin MD, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kroth H, Oden F, Molette J, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith DH, Chen XH, Nonaka M, et al. Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol. 1999;58(9):982–92.

    Article  CAS  PubMed  Google Scholar 

  100. Roberts GW, Gentleman SM, Lynch A, Graham DI. Beta A4 amyloid protein deposition in brain after head trauma. Lancet. 1991;338(8780):1422–3.

    Article  CAS  PubMed  Google Scholar 

  101. Lee BG, Leavitt MJ, Bernick CB, Leger GC, Rabinovici G, Banks SJ. A systematic review of positron emission tomography of tau, amyloid Beta, and Neuroinflammation in chronic traumatic encephalopathy: the evidence to date. J Neurotrauma. 2018;35(17):2015–24.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Scott G, Ramlackhansingh AF, Edison P, et al. Amyloid pathology and axonal injury after brain trauma. Neurology. 2016;86(9):821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hong YT, Veenith T, Dewar D, et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol. 2019;320:112957.

    Article  CAS  PubMed  Google Scholar 

  105. Coughlin JM, Wang Y, Minn I, et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League Players. JAMA Neurol. 2017;74(1):67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Coughlin JM, Wang Y, Munro CA, et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis. 2015;74:58–65.

    Article  PubMed  Google Scholar 

  107. Agoston DV, Langford D. Big data in traumatic brain injury; promise and challenges. Concussion. 2017;2(4):CNC45.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol. 2019;37(1):34–72.

    Article  PubMed  Google Scholar 

  109. Van Horn JD, Bhattrai A, Irimia A. Multimodal imaging of Neurometabolic pathology due to traumatic brain injury. Trends Neurosci. 2017;40(1):39–59.

    Article  PubMed  Google Scholar 

  110. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR imaging: new frontier in Alzheimer’s disease and other dementias. Front Mol Neurosci. 2017;10:343.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Miller-Thomas MM, Benzinger TLS. Neurologic applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):297–313.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med. 2014;55(Supplement 2):47S–55S.

    Article  PubMed  Google Scholar 

  113. Peretti DE, Vállez García D, Reesink FE, et al. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer’s disease. EJNMMI Res. 2019;9(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Beyer L, Nitschmann A, Barthel H, et al. Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur J Nucl Med Mol Imaging. 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Buchpiguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aranha, M.R., Coutinho, A.M., da Costa Leite, C., Buchpiguel, C.A. (2022). Traumatic Brain Injury and Chronic Traumatic Encephalopathy. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics