Skip to main content

Microglial Activation and Neuroinflammation

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging
  • 1839 Accesses

Abstract

Several neurological and psychiatric disorders have been associated with neuroinflammation, defined by the activation of microglia and astrocytes in the brain. PET radioligands that target microglial and astrocytic proteins allow in vivo quantification of neuroimmune responses. To date, the 18 kDa translocator protein (TSPO) and monoamine oxidase B, proteins predominantly expressed by microglia and astrocytes, respectively, are the most commonly used targets of neuroinflammation PET radioligands. Several TSPO radioligands have been developed; however, TSPO PET has only been extensively studied in a few disorders, and results of these studies have not always been consistent. Evidence suggests that PET imaging can detect neuroinflammatory changes in Alzheimer’s disease, major depressive disorder, and traumatic brain injury. In Alzheimer’s disease, TSPO signal increases with disease progression, suggesting that PET imaging could be used to monitor inflammatory changes in patients with this disorder. In major depressive disorder, unmedicated patients have greater TSPO signal, and greater amounts of TSPO binding are associated with reduction of mood symptoms after treatment with celecoxib. Therefore, TSPO PET may be useful predictor of response to anti-inflammatory therapies in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang M, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34(10):3793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tu LN, et al. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem. 2014;289(40):27444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gui Y, et al. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol. 2020;30(1):151–64.

    Article  CAS  PubMed  Google Scholar 

  4. Tournier BB, et al. Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding. J Cereb Blood Flow Metab. 2020;40(6):1242–55.

    Article  CAS  PubMed  Google Scholar 

  5. Pannell M, et al. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia. 2020;68(2):280–97.

    Article  PubMed  Google Scholar 

  6. Feng H, et al. TSPO ligands PK11195 and midazolam reduce NLRP3 inflammasome activation and proinflammatory cytokine release in BV-2 cells. Front Cell Neurosci. 2020;14:544431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreisl WC, et al. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020;19(11):940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi M, et al. (11)C-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than (11)C-( R)-PK11195. J Cereb Blood Flow Metab. 2018;38(3):393–403.

    Article  CAS  PubMed  Google Scholar 

  9. Owen DR, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  10. Kreisl WC, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab. 2013;33(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ikawa M, et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med. 2017;58(2):320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujita M, et al. Comparison of four (11)C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios. EJNMMI Res. 2017;7(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boutin H, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging. 2015;42(3):503–11.

    Article  CAS  PubMed  Google Scholar 

  14. Feeney C, et al. Kinetic analysis of the translocator protein positron emission tomography ligand [(18)F]GE-180 in the human brain. Eur J Nucl Med Mol Imaging. 2016;43(12):2201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zanotti-Fregonara P, et al. Head-to-head comparison of (11)C-PBR28 and (18)F-GE180 for quantification of the translocator protein in the human brain. J Nucl Med. 2018;59(8):1260–6.

    Article  CAS  PubMed  Google Scholar 

  16. Ekblom J, et al. Reactive gliosis and monoamine oxidase B. J Neural Transm Suppl. 1994;41:253–8.

    CAS  PubMed  Google Scholar 

  17. Moriguchi S, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C]SL25.1188 positron emission tomography study. JAMA Psychiat. 2019;76(6):634–41.

    Article  Google Scholar 

  18. Harada R, et al. (18)F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging. J Nucl Med. 2021;62(2):253–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lyoo CH, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect Neuroinflammation measured with PET Radioligand binding to translocator protein. J Nucl Med. 2015;56(5):701–6.

    Article  CAS  PubMed  Google Scholar 

  20. Zanotti-Fregonara P, et al. Automatic extraction of a reference region for the noninvasive quantification of translocator protein in brain using (11)C-PBR28. J Nucl Med. 2019;60(7):978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edison P, et al. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9.

    Article  CAS  PubMed  Google Scholar 

  22. Parbo P, et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease. Brain. 2017;140(7):2002–11.

    Article  PubMed  Google Scholar 

  23. Okello A, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kreisl WC, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease. Brain. 2013;136(Pt 7):2228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suridjan I, et al. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer's disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol Psychiatry. 2015;20(12):1579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zou J, et al. Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment. Neurobiol Aging. 2020;85:11–21.

    Article  CAS  PubMed  Google Scholar 

  27. Dani M, et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain. 2018;141(9):2740–54.

    PubMed  Google Scholar 

  28. Kreisl WC, et al. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer's disease. Neurobiol Aging. 2016;44:53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan Z, et al. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer's disease. Brain. 2015;138(Pt 12):3685–98.

    Article  PubMed  Google Scholar 

  30. Fan Z, et al. An early and late peak in microglial activation in Alzheimer's disease trajectory. Brain. 2017;140(3):792–803.

    PubMed  PubMed Central  Google Scholar 

  31. Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: a meta-analysis. Ageing Res Rev. 2019;50:1–8.

    Article  CAS  PubMed  Google Scholar 

  32. Carter SF, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  33. Esposito G, et al. Imaging neuroinflammation in Alzheimer's disease with radiolabeled arachidonic acid and PET. J Nucl Med. 2008;49(9):1414–21.

    Article  CAS  PubMed  Google Scholar 

  34. Richards EM, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018;8(1):57.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Setiawan E, et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry. 2018;5(4):339–47.

    Article  PubMed  Google Scholar 

  36. Holmes SE, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 2018;83(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Sagar AP, Keri S. Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;83:1–7.

    Article  CAS  Google Scholar 

  38. Li H, Sagar AP, Keri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 2018;241:305–10.

    Article  PubMed  Google Scholar 

  39. Setiawan E, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat. 2015;72(3):268–75.

    Article  Google Scholar 

  40. Hannestad J, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [(1)(1)C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Attwells S, et al. Translocator protein distribution volume predicts reduction of symptoms during open-label trial of celecoxib in major depressive disorder. Biol Psychiatry. 2020;88(8):649–56.

    Article  CAS  PubMed  Google Scholar 

  42. Scott G, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141(2):459–71.

    Article  PubMed  Google Scholar 

  43. Folkersma H, et al. Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. J Nucl Med. 2011;52(8):1235–9.

    Article  PubMed  Google Scholar 

  44. Coughlin JM, et al. Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League Players. JAMA Neurol. 2017;74(1):67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coughlin JM, et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis. 2015;74:58–65.

    Article  PubMed  Google Scholar 

  46. Backhaus P, et al. Initial experience with [(18)F]DPA-714 TSPO-PET to image inflammation in primary angiitis of the central nervous system. Eur J Nucl Med Mol Imaging. 2020;47(9):2131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alshelh Z, et al. In-vivo imaging of neuroinflammation in veterans with gulf war illness. Brain Behav Immun. 2020;87:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lois C, et al. Neuroinflammation in Huntington's disease: new insights with (11)C-PBR28 PET/MRI. ACS Chem Neurosci. 2018;9(11):2563–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Charles Kreisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kreisl, W.C. (2022). Microglial Activation and Neuroinflammation. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics