Skip to main content

Radioligands for Serotonin Receptors and Transporter PET Imaging

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging
  • 1856 Accesses

Abstract

The serotonergic system has long been implicated in widespread functions in the peripheral and central nervous system (CNS). Serotonin or 5-hydroxytryptamine (5-HT) in the CNS is a key neurotransmitter known to modulate numerous physiological and behavioral functions including mood, emotion, cognition, and sleep. Abnormal functioning of the serotonergic system may be involved in pathological conditions of the brain involved in psychiatric and neurodegenerative disorders such as mood disorders, Parkinson’s disease, Alzheimer’s disease, and epilepsy. In the past several decades, neuroimaging of the CNS serotonergic system has led to great advancements in understanding the pathophysiology of these various disorders and disease progression as well as the development of drug treatments. This review provides a summary on the radioligands used for positron emission tomography (PET) imaging of serotonergic receptors and transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–152.

    CAS  PubMed  Google Scholar 

  2. Buhot M-C, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med. 2000;32(3):210–21.

    CAS  PubMed  Google Scholar 

  3. Merens W, Van der Does AW, Spinhoven P. The effects of serotonin manipulations on emotional information processing and mood. J Affect Disord. 2007;103(1–3):43–62.

    CAS  PubMed  Google Scholar 

  4. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81.

    PubMed  Google Scholar 

  5. Page IH. The discovery of serotonin. Perspect Biol Med. 1976;20(1):1–8.

    CAS  PubMed  Google Scholar 

  6. Rapport MM, Green A, Page IH. Serum vasoconstrictor (serotonin). J Biol Chem. 1949;176:1243–51.

    Google Scholar 

  7. Erspamer V. Action of acetone extract of rabbit stomach mucosa on blood pressure and on surviving isolated organs. Naunyn Schmiedebergs Arch Exp Path Pharmakol. 1940;196:343–65.

    CAS  Google Scholar 

  8. Vialli M. Histology of the enterochromaffin cell system. In: 5-Hydroxytryptamine and related indolealkylamines. Berlin: Springer; 1966. p. 1–65.

    Google Scholar 

  9. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414.

    CAS  PubMed  Google Scholar 

  10. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66(9):1673–80.

    CAS  PubMed  Google Scholar 

  11. Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299(5603) 76–.

    Google Scholar 

  12. Wilson MA, Molliver ME. The organization of serotonergic projections to cerebral cortex in primates: retrograde transport studies. Neuroscience. 1991;44(3):555–70.

    CAS  PubMed  Google Scholar 

  13. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66. https://doi.org/10.1146/annurev.med.60.042307.110802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994;46(2):157–203.

    CAS  PubMed  Google Scholar 

  15. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195(1):198–213.

    CAS  PubMed  Google Scholar 

  16. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71(4):533–54.

    CAS  PubMed  Google Scholar 

  17. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. 2013;33(1):54–111.

    CAS  PubMed  Google Scholar 

  18. Guttman M, Boileau I, Warsh J, Saint-Cyr J, Ginovart N, McCluskey T, et al. Brain serotonin transporter binding in non-depressed patients with Parkinson's disease. Eur J Neurol. 2007;14(5):523–8.

    CAS  PubMed  Google Scholar 

  19. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang L-J, Guttman M, et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease. Brain. 2008;131(1):120–31.

    PubMed  Google Scholar 

  20. Ballanger B, Klinger H, Eche J, Lerond J, Vallet AE, Le Bars D, et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Mov Disord. 2012;27(1):84–9.

    CAS  PubMed  Google Scholar 

  21. Leysen J. 5-HT2 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004;3(1):11–26.

    CAS  PubMed  Google Scholar 

  22. Maroteaux L, Ayme-Dietrich E, Aubertin-Kirch G, Banas S, Quentin E, Lawson R, et al. New therapeutic opportunities for 5-HT2 receptor ligands. Pharmacol Ther. 2017;170:14–36.

    CAS  PubMed  Google Scholar 

  23. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment–pharmacological mechanisms. Pharmacol Ther. 2010;125(1):169–79.

    CAS  PubMed  Google Scholar 

  24. Tollens F, Gass N, Becker R, Schwarz A, Risterucci C, Künnecke B, et al. The affinity of antipsychotic drugs to dopamine and serotonin 5-HT2 receptors determines their effects on prefrontal-striatal functional connectivity. Eur Neuropsychopharmacol. 2018;28(9):1035–46.

    CAS  PubMed  Google Scholar 

  25. Buchborn T, Schröder H, Höllt V, Grecksch G. Repeated lysergic acid diethylamide in an animal model of depression: normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol. 2014;28(6):545–52.

    PubMed  Google Scholar 

  26. Toro-Sazo M, Brea J, Loza MI, Cimadevila M, Cassels BK. 5-HT2 receptor binding, functional activity and selectivity in N-benzyltryptamines. PLoS One. 2019;14(1):e0209804.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhao H, Lin Y, Chen S, Li X, Huo H. 5-HT3 receptors: a potential therapeutic target for epilepsy. Curr Neuropharmacol. 2018;16(1):29–36.

    PubMed Central  PubMed  Google Scholar 

  28. Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther. 2011;130(3):338–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Navari RM. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy. Biochim. Biophys. Acta. 2015;1848(10):2738–46.

    CAS  PubMed  Google Scholar 

  30. Walstab J, Rappold G, Niesler B. 5-HT3 receptors: role in disease and target of drugs. Pharmacol Ther. 2010;128(1):146–69.

    CAS  PubMed  Google Scholar 

  31. Enoch M-A, Gorodetsky E, Hodgkinson C, Roy A, Goldman D. Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Mol Psychiatry. 2011;16(11):1139–46.

    CAS  PubMed  Google Scholar 

  32. Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography. London: Springer; 2005.

    Google Scholar 

  33. Dileep Kumar J, John MJ. PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem. 2014;14(2):96–112.

    CAS  Google Scholar 

  34. Honer M, Gobbi L, Martarello L, Comley RA. Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov Today. 2014;19(12):1936–44.

    CAS  PubMed  Google Scholar 

  35. Pike VW. PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci. 1998;861:204–16.

    CAS  PubMed  Google Scholar 

  37. Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminal. Neuroscience. 1981;6:557–618.

    CAS  PubMed  Google Scholar 

  38. Lanfumey L, Hamon M. Central 5-HT(1A) receptors: regional distribution and functional characteristics. Nucl Med Biol. 2000;27(5):429–35.

    CAS  PubMed  Google Scholar 

  39. Blier P, de Montigny C, Chaput Y. A role for the serotonin system in the mechanism of action of antidepressant treatments: preclinical evidence. J Clin Psychiatry. 1990;51(Suppl):14–20; discussion 1.

    PubMed  Google Scholar 

  40. Pike VW, McCarron JA, Lammerstma AA, Hume SP, Poole K, Grasby PM, et al. First delineation of 5-HT1A receptors in human brain with PET and [11C]WAY-100635. Eur J Pharmacol. 1995;283(1–3):R1–3.

    CAS  PubMed  Google Scholar 

  41. Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE. WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology. 2006;188(2):244–51. https://doi.org/10.1007/s00213-006-0490-4.

    Article  CAS  PubMed  Google Scholar 

  42. Andree B, Halldin C, Pike VW, Gunn RN, Olsson H, Farde L. The PET radioligand [carbonyl-(11)C]desmethyl-WAY-100635 binds to 5-HT(1A) receptors and provides a higher radioactive signal than [carbonyl-(11)C]WAY-100635 in the human brain. J Nucl Med. 2002;43(3):292–303.

    CAS  PubMed  Google Scholar 

  43. Merlet I, Ostrowsky K, Costes N, Ryvlin P, Isnard J, Faillenot I, et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F] MPPF-PET study. Brain. 2004;127(4):900–13.

    PubMed  Google Scholar 

  44. Kepe V, Barrio JR, Huang SC, Ercoli L, Siddarth P, Shoghi-Jadid K, et al. Serotonin 1A receptors in the living brain of Alzheimer's disease patients. Proc Natl Acad Sci U S A. 2006;103(3):702–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Meyer M, Lamare F, Asselineau J, Foubert-Samier A, Mazère J, Zanotti-Fregonara P, et al. Brain 5-HT1A receptor binding in multiple system atrophy: an [18F]-MPPF PET study. Mov Disord. 2021;36(1):246–51.

    CAS  PubMed  Google Scholar 

  46. Wooten D, Hillmer A, Murali D, Barnhart T, Schneider ML, Mukherjee J, et al. An in vivo comparison of cis-and trans-[18F] mefway in the nonhuman primate. Nucl Med Biol. 2011;38(7):925–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Wooten D, Moraino J, Hillmer A, Engle J, Dejesus O, Murali D, et al. In vivo kinetics of [F-18] MEFWAY: a comparison with [C-11] WAY100635 and [F-18] MPPF in the nonhuman primate. Synapse. 2011;65(7):592–600.

    CAS  PubMed  Google Scholar 

  48. Mukherjee J, Bajwa AK, Wooten DW, Hillmer AT, Pan ML, Pandey SK, et al. Comparative assessment of (18) F-Mefway as a serotonin 5-HT1A receptor PET imaging agent across species- rodents, nonhuman primates, and humans¶. J Comp Neurol. 2015; https://doi.org/10.1002/cne.23919.

  49. Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ, et al. In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med. 2010;51(12):1892–900. https://doi.org/10.2967/jnumed.110.076257.

    Article  PubMed  Google Scholar 

  50. Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser J, et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11 C] CUMI-101 PET challenge study. Mol Psychiatry. 2012;17(12):1254–60.

    CAS  PubMed  Google Scholar 

  51. Milak MS, Severance AJ, Prabhakaran J, Kumar JD, Majo VJ, Ogden RT, et al. In vivo serotonin-sensitive binding of [11C] CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab. 2011;31(1):243–9.

    CAS  PubMed  Google Scholar 

  52. Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, Madsen J, et al. No change in [(1)(1)C]CUMI-101 binding to 5-HT(1A) receptors after intravenous citalopram in human. Synapse. 2012;66(10):880–4. https://doi.org/10.1002/syn.21579.

    Article  CAS  PubMed  Google Scholar 

  53. Shrestha SS, Liow JS, Lu S, Jenko K, Gladding RL, Svenningsson P, et al. 11C-CUMI-101, a PET radioligand, behaves as a serotonin 1A receptor antagonist and also binds to alpha1 adrenoceptors in brain. J Nucl Med. 2014;55(1):141–6. https://doi.org/10.2967/jnumed.113.125831.

    Article  CAS  PubMed  Google Scholar 

  54. Hazari PP, Pandey A, Chaturvedi S, Mishra AK. New trends and current status of positron-emission tomography and single-photon-emission computerized tomography radioligands for neuronal serotonin receptors and serotonin transporter. Bioconjug Chem. 2017;28(11):2647–72.

    CAS  PubMed  Google Scholar 

  55. Varnäs K, Hall H, Bonaventure P, Sedvall G. Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in the post mortem human brain using [3H] GR 125743. Brain Res. 2001;915(1):47–57.

    PubMed  Google Scholar 

  56. Deen M, Hansen HD, Hougaard A, da Cunha-Bang S, Nørgaard M, Svarer C, et al. Low 5-HT1B receptor binding in the migraine brain: a PET study. Cephalalgia. 2018;38(3):519–27.

    PubMed  Google Scholar 

  57. Deen M, Hougaard A, Hansen HD, Schain M, Dyssegaard A, Knudsen GM, et al. Association between sumatriptan treatment during a migraine attack and central 5-HT1B receptor binding. JAMA Neurol. 2019;76(7):834–40.

    PubMed Central  PubMed  Google Scholar 

  58. Ruf B, Bhagwagar Z. The 5-HT1B receptor: a novel target for the pathophysiology of depression (supplementary tables). Curr Drug Targets. 2009;10(11):1118–38.

    CAS  PubMed  Google Scholar 

  59. de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol. 2005;526(1–3):125–39.

    PubMed  Google Scholar 

  60. Pierson ME, Andersson J, Nyberg S, McCarthy DJ, Finnema SJ, Varnäs K, et al. [11C] AZ10419369: a selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET). Characterization in the primate brain. NeuroImage. 2008;41(3):1075–85.

    PubMed  Google Scholar 

  61. Gallezot J-D, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, et al. Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C] P943 in humans. J Cereb Blood Flow Metab. 2010;30(1):196–210.

    CAS  PubMed  Google Scholar 

  62. Saricicek A, Chen J, Planeta B, Ruf B, Subramanyam K, Maloney K, et al. Test–retest reliability of the novel 5-HT 1B receptor PET radioligand [11 C] P943. Eur J Nucl Med Mol Imaging. 2015;42(3):468–77.

    CAS  PubMed  Google Scholar 

  63. Murrough JW, Henry S, Hu J, Gallezot J-D, Planeta-Wilson B, Neumaier JF, et al. Reduced ventral striatal/ventral pallidal serotonin 1B receptor binding potential in major depressive disorder. Psychopharmacology. 2011;213(2):547–53.

    CAS  PubMed  Google Scholar 

  64. Murrough JW, Czermak C, Henry S, Nabulsi N, Gallezot J-D, Gueorguieva R, et al. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry. 2011;68(9):892–900.

    PubMed Central  PubMed  Google Scholar 

  65. Matuskey D, Bhagwagar Z, Planeta B, Pittman B, Gallezot J-D, Chen J, et al. Reductions in brain 5-HT1B receptor availability in primarily cocaine-dependent humans. Biol Psychiatry. 2014;76(10):816–22.

    CAS  PubMed  Google Scholar 

  66. Hu J, Henry S, Gallezot J-D, Ropchan J, Neumaier JF, Potenza MN, et al. Serotonin 1B receptor imaging in alcohol dependence. Biol Psychiatry. 2010;67(9):800–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lucaites VL, Krushinski JH, Schaus JM, Audia JE, Nelson DL. [3 H] LY334370, a novel radioligand for the 5-HT 1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Schmiedeberg's Arch Pharmacol. 2005;371(3):178–84.

    CAS  Google Scholar 

  68. Bonaventure P, Schotte A, Cras P, Leysen JE. Autoradiographic mapping of 5-HT1B- and 5-HT1D receptors in human brain using [3H]alniditan, a new radioligand. Receptors Channels. 1997;5(3–4):225–30.

    CAS  PubMed  Google Scholar 

  69. Bruinvels A, Landwehrmeyer B, Gustafson E, Durkin M, Mengod G, Branchek T, et al. Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology. 1994;33(3–4):367–86.

    CAS  PubMed  Google Scholar 

  70. Bai F, Yin T, Johnstone EM, Su C, Varga G, Little SP, et al. Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol. 2004;484(2–3):127–39.

    CAS  PubMed  Google Scholar 

  71. Moreno-Ajona D, Chan C, Villar-Martínez MD, Goadsby PJ. Targeting CGRP and 5-HT1F receptors for the acute therapy of migraine: a literature review. Headache. 2019;59:3–19.

    PubMed  Google Scholar 

  72. Ferrari MD, Färkkilä M, Reuter U, Pilgrim A, Davis C, Krauss M, et al. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan–a randomised proof-of-concept trial. Cephalalgia. 2010;30(10):1170–8.

    PubMed  Google Scholar 

  73. Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain--III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience. 1987;21(1):97–122.

    CAS  PubMed  Google Scholar 

  74. Gonzalez-Maeso J, Sealfon SC. Psychedelics and schizophrenia. Trends Neurosci. 2009;32(4):225–32.

    CAS  PubMed  Google Scholar 

  75. Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des. 2015;21(26):3732–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Baron J, Samson Y, Comar D, Crouzel C, Deniker P, Agid Y. In vivo study of central serotoninergic receptors in man using positron tomography. Rev Neurol. 1985;141(8–9):537–45.

    CAS  PubMed  Google Scholar 

  77. Moerlein SM, Perlmutter JS. Central serotonergic S2 binding in Papio anubis measured in vivo with N-ω-[18F] fluoroethylketanserin and PET. Neurosci Lett. 1991;123(1):23–6.

    CAS  PubMed  Google Scholar 

  78. López-Giménez JF, Mengod G, Palacios JM, Vilaró MT. Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H] MDL 100,907. Naunyn Schmiedeberg's Arch Pharmacol. 1997;356(4):446–54.

    Google Scholar 

  79. López-Giménez JF, Vilaró MT, Palacios JM, Mengod G. [3H] MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology. 1998;37(9):1147–58.

    PubMed  Google Scholar 

  80. Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med. 1998;39(1):208–14.

    CAS  PubMed  Google Scholar 

  81. Meyer PT, Bhagwagar Z, Cowen PJ, Cunningham VJ, Grasby PM, Hinz R. Simplified quantification of 5-HT2A receptors in the human brain with [11C] MDL 100,907 PET and non-invasive kinetic analyses. NeuroImage. 2010;50(3):984–93.

    CAS  PubMed  Google Scholar 

  82. Meyer JH, Kapur S, Houle S, DaSilva J, Owczarek B, Brown GM, et al. Prefrontal cortex 5-HT2 receptors in depression: an [18F]setoperone PET imaging study. Am J Psychiatr. 1999;156(7):1029–34.

    CAS  PubMed  Google Scholar 

  83. Véra P, Zilbovicius M, Chabriat H, Amarenco P, Kerdraon J, Ménard JF, et al. Post-stroke changes in cortical 5-HT2 serotonergic receptors. J Nucl Med. 1996;37(12):1976–81.

    PubMed  Google Scholar 

  84. Attar-Levy D, Martinot JL, Blin J, Dao-Castellana MH, Crouzel C, Mazoyer B, et al. The cortical serotonin2 receptors studied with positron-emission tomography and [18F]-setoperone during depressive illness and antidepressant treatment with clomipramine. Biol Psychiatry. 1999;45(2):180–6.

    CAS  PubMed  Google Scholar 

  85. Blin J, Baron JC, Dubois B, Crouzel C, Fiorelli M, Attar-Lévy D, et al. Loss of brain 5-HT2receptors in Alzheimer's disease: in vivo assessment with positron emission tomography and (18) setoperone. Brain. 1993;116(3):497–510.

    PubMed  Google Scholar 

  86. Massarweh G, Kovacevic M, Rosa-Neto P, Evans A, Diksic M, Schirrmacher R. Time-efficient and convenient synthesis of [18F] altanserin for human PET imaging by a new work-up procedure. Appl Radiat Isot. 2009;67(11):2040–3.

    CAS  PubMed  Google Scholar 

  87. Mintun MA, Sheline YI, Moerlein SM, Vlassenko AG, Huang Y, Snyder AZ. Decreased hippocampal 5-HT(2A) receptor binding in major depressive disorder: in vivo measurement with [(18)F]altanserin positron emission tomography. Biol Psychiatry. 2004;55(3):217–24.

    CAS  PubMed  Google Scholar 

  88. Sheline YI, Mintun MA, Barch DM, Wilkins C, Snyder AZ, Moerlein SM. Decreased hippocampal 5-HT 2A receptor binding in older depressed patients using [18 F] altanserin positron emission tomography. Neuropsychopharmacology. 2004;29(12):2235–41.

    CAS  PubMed  Google Scholar 

  89. Bailer UF, Price JC, Meltzer CC, Mathis CA, Frank GK, Weissfeld L, et al. Altered 5-HT 2A receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology. 2004;29(6):1143–55.

    CAS  PubMed  Google Scholar 

  90. Frank GK, Kaye WH, Meltzer CC, Price JC, Greer P, McConaha C, et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry. 2002;52(9):896–906.

    CAS  PubMed  Google Scholar 

  91. Bonhaus DW, Bach C, DeSouza A, Salazar FR, Matsuoka BD, Zuppan P, et al. The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol. 1995;115(4):622–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kursar JD, Nelson DL, Wainscott DB, Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol. 1994;46(2):227–34.

    CAS  PubMed  Google Scholar 

  93. Radke AK, Piantadosi PT, Uhl GR, Hall FS, Holmes A. Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neurosci Lett. 2020;738:135378.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Li X, Liang S, Li Z, Li S, Xia M, Verkhratsky A, et al. Leptin increases expression of 5-HT2B receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation. Front Psych. 2019;9:734.

    Google Scholar 

  95. Sharma A, Punhani T, Fone KC. Distribution of the 5-hydroxytryptamine2C receptor protein in adult rat brain and spinal cord determined using a receptor-directed antibody: effect of 5, 7-dihydroxytryptamine. Synapse. 1997;27(1):45–56.

    CAS  PubMed  Google Scholar 

  96. Hoyer D, Pazos A, Probst A, Palacios J. Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res. 1986;376(1):97–107.

    CAS  PubMed  Google Scholar 

  97. Leonhardt S, Gorospe E, Hoffman BJ, Teitler M. Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine1C and 5-hydroxytryptamine2 receptors. Mol Pharmacol. 1992;42(2):328–35.

    CAS  PubMed  Google Scholar 

  98. Millan MJ. Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapies. 2005;60(5):441–60.

    Google Scholar 

  99. Liu J, Ogden A, Comery T, Spiros A, Roberts P, Geerts H. Prediction of efficacy of vabicaserin, a 5-HT2C agonist, for the treatment of schizophrenia using a quantitative systems pharmacology model. CPT Pharmacometrics Syst Pharmacol. 2014;3(4):1–8.

    CAS  Google Scholar 

  100. Higgins GA, Sellers EM, Fletcher PJ. From obesity to substance abuse: therapeutic opportunities for 5-HT2C receptor agonists. Trends Pharmacol Sci. 2013;34(10):560–70.

    CAS  PubMed  Google Scholar 

  101. Price AE, Anastasio NC, Stutz SJ, Hommel JD, Cunningham KA. Serotonin 5-HT2C receptor activation suppresses binge intake and the reinforcing and motivational properties of high-fat food. Front Pharmacol. 2018;9:821.

    PubMed Central  PubMed  Google Scholar 

  102. Granda ML, Carlin SM, Moseley CK, Neelamegam R, Mandeville JB, Hooker JM. Synthesis and evaluation of methylated arylazepine compounds for PET imaging of 5-HT2c receptors. ACS Chem Neurosci. 2013;4(2):261–5.

    CAS  PubMed  Google Scholar 

  103. Neelamegam R, Hellenbrand T, Schroeder FA, Wang C, Hooker JM. Imaging evaluation of 5HT2C agonists,[11C] WAY-163909 and [11C] vabicaserin, formed by Pictet–Spengler cyclization. J Med Chem. 2014;57(4):1488–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Marazziti D, Betti L, Giannaccini G, Rossi A, Masala I, Baroni S, et al. Distribution of [3H] GR65630 binding in human brain postmortem. Neurochem Res. 2001;26(3):187–90.

    CAS  PubMed  Google Scholar 

  105. Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev. 2020;40(5):1593–678.

    CAS  PubMed  Google Scholar 

  106. Engleman E, Rodd Z, Bell R, Murphy J. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS Neurol. Disord. Drug Targets. 2008;7(5):454–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ford AC, Brandt LJ, Young C, Chey WD, Foxx-Orenstein AE, Moayyedi P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2009;104(7):1831–43.

    CAS  PubMed  Google Scholar 

  108. Camsonne R, Barre L, Petit-Taboué M-C, Travere J, Jones R, Debruyne D, et al. Positron emission tomographic studies of [11C] MDL 72222, a potential 5-HT3 receptor radioligand: distribution, kinetics and binding in the brain of the baboon. Neuropharmacology. 1993;32(1):65–71.

    CAS  PubMed  Google Scholar 

  109. Barré L, Debruyne D, Lasne M, Gourand F, Bonvento G, Camsonne R, et al. Synthesis and regional rat brain distribution of [11C] MDL 72222: a 5HT3 receptor antagonist. Int. J. Rad. Appl. Instrum. A Appl. Radiat. Isot. 1992;43(4):509–16.

    Google Scholar 

  110. Ishiwata K, Ishii K, Ishii S-I, Senda M. Synthesis of 5-HT3 receptor antagonists,[11C] Y-25130 and [11C] YM060. Appl Radiat Isot. 1995;46(9):907–10.

    CAS  PubMed  Google Scholar 

  111. Ishiwata K, Saito N, Yanagawa K, Furuta R, Ishii S-I, Kiyosawa M, et al. Synthesis and evaluation of 5-HT3 receptor antagonist [11C] KF17643. Nucl Med Biol. 1996;23(3):285–90.

    CAS  PubMed  Google Scholar 

  112. Besret L, Dauphin F, Guillouet S, Dhilly M, Gourand F, Blaizot X, et al. [11C] S21007, a putative partial agonist for 5-HT3 receptors PET studies. Rat and primate in vivo biological evaluation. Life Sci. 1997;62(2):115–29.

    Google Scholar 

  113. Thorell J-O, Stone-Elander S, Eriksson L, Ingvar M. N-methylquipazine: Carbon-11 labelling of the 5-HT3 agonist and in vivo evaluation of its biodistribution using PET. Nucl Med Biol. 1997;24(5):405–12.

    CAS  PubMed  Google Scholar 

  114. Katounina T, Besret L, Dhilly M, Petit-Taboué M-C, Barbelivien A, Baron J-C, et al. Synthesis and biological investigations of [18F] MR18445, a 5-HT3 receptor partial agonist. Bioorg Med Chem. 1998;6(6):789–95.

    CAS  PubMed  Google Scholar 

  115. Pithia NK, Liang C, Pan X-Z, Pan M-L, Mukherjee J. Synthesis and evaluation of (S)-[18F] fesetron in the rat brain as a potential PET imaging agent for serotonin 5-HT3 receptors. Bioorg Med Chem Lett. 2016;26(8):1919–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, et al. Mapping of serotonin 5-HT4 receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse. 2000;36(1):35–46.

    CAS  PubMed  Google Scholar 

  117. Jakeman L, To Z, Eglen R, Wong E, Bonhaus D. Quantitative autoradiography of 5-HT4 receptors in brains of three species using two structurally distinct radioligands,[3H] GR113808 and [3H] BIMU-1. Neuropharmacology. 1994;33(8):1027–38.

    CAS  PubMed  Google Scholar 

  118. Waeber C, Sebben M, Grossman C, Javoy-Agid F, Bockaert J, Dumuis A. [3H]-GR113808 labels 5-HT4 receptors in the human and guinea-pig brain. Neuroreport. 1993;4(11):1239–42.

    CAS  PubMed  Google Scholar 

  119. Compan V, Daszuta A, Salin P, Sebben M, Bockaert J, Dumuis A. Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur J Neurosci. 1996;8(12):2591–8.

    CAS  PubMed  Google Scholar 

  120. Rebholz H, Friedman E, Castello J. Alterations of expression of the serotonin 5-HT4 receptor in brain disorders. Int J Mol Sci. 2018;19(11):3581.

    PubMed Central  Google Scholar 

  121. Murphy SE, Wright LC, Browning M, Cowen PJ, Harmer CJ. A role for 5-HT4 receptors in human learning and memory. Psychol Med. 2020;50(16):2722–30.

    PubMed  Google Scholar 

  122. Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT4 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004;3(1):39–51.

    CAS  PubMed  Google Scholar 

  123. Marner L, Gillings N, Comley RA, Baaré WF, Rabiner EA, Wilson AA, et al. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo. J Nucl Med. 2009;50(6):900–8.

    CAS  PubMed  Google Scholar 

  124. Marner L, Gillings N, Madsen K, Erritzoe D, Baaré WF, Svarer C, et al. Brain imaging of serotonin 4 receptors in humans with [11C] SB207145-PET. NeuroImage. 2010;50(3):855–61.

    CAS  PubMed  Google Scholar 

  125. Gee A, Martarello L, Passchier J, Wishart M, Parker C, Matthews J, et al. Synthesis and evaluation of [11C] SB207145 as the first in vivo serotonin 5-HT4 receptor radioligand for PET imaging in man. Curr Radiopharm. 2008;1(2):110–4.

    CAS  Google Scholar 

  126. Buiter HJ, Windhorst AD, Huisman MC, De Maeyer JH, Schuurkes JA, Lammertsma AA, et al. Radiosynthesis and preclinical evaluation of [11 C] prucalopride as a potential agonist pet ligand for the 5-HT 4 receptor. EJNMMI Res. 2013;3(1):1–13.

    Google Scholar 

  127. Caillé F, Morley TJ, Tavares AAS, Papin C, Twardy NM, Alagille D, et al. Synthesis and biological evaluation of positron emission tomography radiotracers targeting serotonin 4 receptors in brain:[18F] MNI-698 and [18F] MNI-699. Bioorg Med Chem Lett. 2013;23(23):6243–7.

    PubMed  Google Scholar 

  128. Tavares AAS, Caillé F, Barret O, Papin C, Lee H, Morley TJ, et al. In vivo evaluation of 18F-MNI698: an 18F-labeled radiotracer for imaging of serotonin 4 receptors in brain. J Nucl Med. 2014;55(5):858–64.

    CAS  PubMed  Google Scholar 

  129. Tavares AAS, Caillé F, Barret O, Papin C, Lee H, Morley TJ, et al. Whole-body biodistribution and dosimetry estimates of a novel radiotracer for imaging of serotonin 4 receptors in brain:[18F] MNI-698. Nucl Med Biol. 2014;41(5):432–9.

    CAS  PubMed  Google Scholar 

  130. Plassat J-L, Boschert U, Amlaiky N, Hen R. The mouse 5HT5 receptor reveals a remarkable heterogeneity within the 5HT1D receptor family. EMBO J. 1992;11(13):4779–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Erlander MG, Lovenberg TW, Baron BM, de Lecea L, Danielson PE, Racke M, et al. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci. 1993;90(8):3452–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wisden W, Parker EM, Mahle CD, Grisel DA, Nowak HP, Yocca FD, et al. Cloning and characterization of the rat 5-HT5B receptor: evidence that the 5-HT5B receptor couples to a G protein in mammalian cell membranes. FEBS Lett. 1993;333(1–2):25–31.

    CAS  PubMed  Google Scholar 

  133. Rees S, den Daas I, Foord S, Goodson S, Bull D, Kilpatrick G, et al. Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett. 1994;355(3):242–6.

    CAS  PubMed  Google Scholar 

  134. Grailhe R, Grabtree GW, Hen R. Human 5-HT5 receptors: the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur J Pharmacol. 2001;418(3):157–67.

    CAS  PubMed  Google Scholar 

  135. Glennon RA. Higher-end serotonin receptors: 5-HT5, 5-HT6, and 5-HT7. J Med Chem. 2003;46(14):2795–812.

    CAS  PubMed  Google Scholar 

  136. Woolley ML, Marsden CA, Fone KC. 5-ht6 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004;3(1):59–79.

    CAS  PubMed  Google Scholar 

  137. East SZ, Burnet PW, Leslie RA, Roberts JC, Harrison PJ. 5-HT6 receptor binding sites in schizophrenia and following antipsychotic drug administration: autoradiographic studies with [125I] SB-258585. Synapse. 2002;45(3):191–9.

    CAS  PubMed  Google Scholar 

  138. King M, Marsden C, Fone K. A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci. 2008;29(9):482–92. https://doi.org/10.1016/j.tips.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  139. Chaumont-Dubel S, Dupuy V, Bockaert J, Bécamel C, Marin P. The 5-HT6 receptor interactome: new insight in receptor signaling and its impact on brain physiology and pathologies. Neuropharmacology. 2019;107839

    Google Scholar 

  140. Tang S, Verdurand M, Joseph B, Lemoine L, Daoust A, Billard T, et al. Synthesis and biological evaluation in rat and cat of [18F] 12ST05 as a potential 5-HT6 PET radioligand. Nucl Med Biol. 2007;34(8):995–1002.

    CAS  PubMed  Google Scholar 

  141. Parker CA, Cunningham VJ, Martarello L, Rabinera E, Searle G, Gee A, et al. Evaluation of the novel 5-HT6 receptor radioligand,[(11) C] GSK-215083 in human. NeuroImage. 2008;41(Suppl. 2):T20.

    Google Scholar 

  142. Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R, Salinas C, et al. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med. 2012;53(2):295–303.

    CAS  PubMed  Google Scholar 

  143. Parker CA, Rabiner EA, Gunn RN, Searle G, Martarello L, Comley RA, et al. Human kinetic modeling of the 5HT6 PET radioligand 11C-GSK215083 and its utility for determining occupancy at both 5HT6 and 5HT2A receptors by SB742457 as a potential therapeutic mechanism of action in Alzheimer disease. J Nucl Med. 2015;56(12):1901–9.

    CAS  PubMed  Google Scholar 

  144. Becker G, Colomb J, Sgambato-Faure V, Tremblay L, Billard T, Zimmer L. Preclinical evaluation of [18 F] 2FNQ1P as the first fluorinated serotonin 5-HT 6 radioligand for PET imaging. Eur J Nucl Med Mol Imaging. 2015;42(3):495–502.

    CAS  PubMed  Google Scholar 

  145. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem. 1993;268(31):23422–6.

    CAS  PubMed  Google Scholar 

  146. Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang J-M, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci. 1993;90(18):8547–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Thomas D, Atkinson P, Hastie P, Roberts J, Middlemiss D, Price G. [3H]-SB-269970 radiolabels 5-HT7 receptors in rodent, pig and primate brain tissues. Neuropharmacology. 2002;42(1):74–81.

    CAS  PubMed  Google Scholar 

  148. Varnäs K, Thomas DR, Tupala E, Tiihonen J, Hall H. Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [3H] SB-269970. Neurosci Lett. 2004;367(3):313–6.

    PubMed  Google Scholar 

  149. Krobert KA, Bach T, Syversveen T, Kvingedal A, Levy F. The cloned human 5-HT 7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedeberg's Arch Pharmacol. 2001;363(6):620–32.

    CAS  Google Scholar 

  150. Thomas DR, Hagan JJ. 5-HT7 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004;3(1):81–90.

    CAS  PubMed  Google Scholar 

  151. Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther. 2011;129(2):120–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol. 2015;6:162.

    PubMed Central  PubMed  Google Scholar 

  153. Eriksson TM, Golkar A, Ekström JC, Svenningsson P, Ögren SO. 5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT1A receptor stimulation on contextual learning in mice. Eur J Pharmacol. 2008;596(1–3):107–10.

    CAS  PubMed  Google Scholar 

  154. Eriksson TM, Holst S, Stan TL, Hager T, Sjögren B, Ögren SO, et al. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology. 2012;63(6):1150–60.

    CAS  PubMed  Google Scholar 

  155. Duncan MJ, Congleton MR. Neural mechanisms mediating circadian phase resetting by activation of 5-HT7 receptors in the dorsal raphe: roles of GABAergic and glutamatergic neurotransmission. Brain Res. 2010;1366:110–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron. 1993;11(3):449–58.

    CAS  PubMed  Google Scholar 

  157. Hedlund PB, Kelly L, Mazur C, Lovenberg T, Sutcliffe JG, Bonaventure P. 8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. Eur J Pharmacol. 2004;487(1–3):125–32.

    CAS  PubMed  Google Scholar 

  158. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry. 2005;58(10):831–7.

    CAS  PubMed  Google Scholar 

  159. Zhang MR, Haradahira T, Maeda J, Okauchi T, Kida T, Obayashi S, et al. Synthesis and preliminary PET study of the 5-HT7 receptor antagonist [11C] DR4446. J Label Compd Radiopharm. 2002;45(10):857–66.

    CAS  Google Scholar 

  160. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288–95.

    CAS  PubMed  Google Scholar 

  161. Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78(4):969–1054.

    PubMed  Google Scholar 

  162. Murphy DL, Lesch K-P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96.

    CAS  PubMed  Google Scholar 

  163. Saulin A, Savli M, Lanzenberger R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids. 2012;42(6):2039–57.

    CAS  PubMed  Google Scholar 

  164. Szabo Z, Kao PF, Scheffel U, Suehiro M, Mathews WB, Ravert HT, et al. Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)McN5652. Synapse. 1995;20(1):37–43.

    CAS  PubMed  Google Scholar 

  165. Frankle WG, Huang Y, Hwang DR, Talbot PS, Slifstein M, Van Heertum R, et al. Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med. 2004;45(4):682–94.

    CAS  PubMed  Google Scholar 

  166. Szabo Z, McCann UD, Wilson AA, Scheffel U, Owonikoko T, Mathews WB, et al. Comparison of (+)-(11)C-McN5652 and (11)C-DASB as serotonin transporter radioligands under various experimental conditions. J Nucl Med. 2002;43(5):678–92.

    CAS  PubMed  Google Scholar 

  167. Tipre D, Lu J, Fujita M, Ichise M, Vines D, Innis R. Radiation dosimetry estimates for the PET serotonin transporter probe 11C-DASB determined from whole-body imaging in non-human primates. Nucl Med Commun. 2004;25(1):81–6.

    CAS  PubMed  Google Scholar 

  168. Frankle WG, Slifstein M, Gunn RN, Huang Y, Hwang DR, Darr EA, et al. Estimation of serotonin transporter parameters with 11C-DASB in healthy humans: reproducibility and comparison of methods. J Nucl Med. 2006;47(5):815–26.

    CAS  PubMed  Google Scholar 

  169. Kim JS, Ichise M, Sangare J, Innis RB. PET imaging of serotonin transporters with [11C]DASB: test-retest reproducibility using a multilinear reference tissue parametric imaging method. J Nucl Med. 2006;47(2):208–14.

    CAS  PubMed  Google Scholar 

  170. Huang TY, Hwang DR, Narendran R, Sudo Y, Chatterjee R, Bae SA, et al. Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [C-11]McN 5652, [C-11]ADAM, [C-11]DASB, [C-11]DAPA, and [C-11]AFM. J Cereb Blood Flow Metab. 2002;22(11):1377–98.

    CAS  PubMed  Google Scholar 

  171. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry. 2001;158(11):1843–9.

    CAS  PubMed  Google Scholar 

  172. Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB, et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry. 2006;59(9):821–8.

    CAS  PubMed  Google Scholar 

  173. Takano A, Suzuki K, Kosaka J, Ota M, Nozaki S, Ikoma Y, et al. A dose-finding study of duloxetine based on serotonin transporter occupancy. Psychopharmacology. 2006;185(3):395–9.

    CAS  PubMed  Google Scholar 

  174. Voineskos AN, Wilson AA, Boovariwala A, Sagrati S, Houle S, Rusjan P, et al. Serotonin transporter occupancy of high-dose selective serotonin reuptake inhibitors during major depressive disorder measured with [11C]DASB positron emission tomography. Psychopharmacology. 2007;193(4):539–45. https://doi.org/10.1007/s00213-007-0806-z.

    Article  CAS  PubMed  Google Scholar 

  175. McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, et al. Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11 C] McN5652 and [11 C] DASB. Neuropsychopharmacology. 2005;30(9):1741–50.

    CAS  PubMed  Google Scholar 

  176. Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, Ginovart N, et al. Brain serotonin transporter binding potential measured with carbon11–labeled dasb positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry. 2004;61(12):1271–9.

    CAS  PubMed  Google Scholar 

  177. Bhagwagar Z, Murthy N, Selvaraj S, Hinz R, Taylor M, Fancy S, et al. 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB. Am J Psychiatry. 2007;164(12):1858–65. https://doi.org/10.1176/appi.ajp.2007.06111933.

    Article  PubMed  Google Scholar 

  178. Reimold M, Batra A, Knobel A, Smolka MN, Zimmer A, Mann K, et al. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [(11)C]DASB PET study. Mol Psychiatry. 2008. doi: 4002149 [pii]; https://doi.org/10.1038/sj.mp.4002149.

  179. Frankle WG, Narendran R, Huang Y, Hwang DR, Lombardo I, Cangiano C, et al. Serotonin transporter availability in patients with schizophrenia: a positron emission tomography imaging study with [11C]DASB. Biol Psychiatry. 2005;57(12):1510–6.

    CAS  PubMed  Google Scholar 

  180. Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, et al. Serotonin transporter binding in bipolar disorder assessed using [(11)C]DASB and positron emission tomography. Biol Psychiatry. 2006;60(3):207–17.

    CAS  PubMed  Google Scholar 

  181. Reimold M, Smolka M, Zimmer A, Batra A, Knobel A, Solbach C, et al. Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity–a [11 C] DASB PET study. J Neural Transm. 2007;114(12):1603–9.

    CAS  PubMed  Google Scholar 

  182. Brown AK, George DT, Fujita M, Liow JS, Ichise M, Hibbeln J, et al. PET [11C] DASB imaging of serotonin transporters in patients with alcoholism. Alcohol Clin Exp Res. 2007;31(1):28–32.

    CAS  PubMed  Google Scholar 

  183. Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46(9):1505–15.

    CAS  PubMed  Google Scholar 

  184. Chalon S, Tarkiainen J, Garreau L, Hall H, Emond P, Vercouillie J, et al. Pharmacological characterization of N, N-dimethyl-2-(2-amino-4-methylphenyl thio) benzylamine as a ligand of the serotonin transporter with high affinity and selectivity. J Pharmacol Exp Ther. 2003;304(1):81–7.

    CAS  PubMed  Google Scholar 

  185. Lundberg J, Halldin C, Farde L. Measurement of serotonin transporter binding with PET and [11C] MADAM: a test–retest reproducibility study. Synapse. 2006;60(3):256–63.

    CAS  PubMed  Google Scholar 

  186. Chen Y-A, Huang W-S, Lin Y-S, Cheng C-Y, Liu R-S, Wang S-J, et al. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study. Nucl Med Biol. 2012;39(2):279–85.

    CAS  PubMed  Google Scholar 

  187. Huang W-S, Huang S-Y, Ho P-S, Ma K-H, Huang Y-Y, Yeh C-B, et al. PET imaging of the brain serotonin transporters (SERT) with N, N-dimethyl-2-(2-amino-4-[18 F] fluorophenylthio)benzylamine (4-[18 F]-ADAM) in humans: a preliminary study. Eur J Nucl Med Mol Imaging. 2013;40(1):115–24.

    PubMed  Google Scholar 

  188. Yeh Y-W, Ho P-S, Chen C-Y, Kuo S-C, Liang C-S, Yen C-H, et al. Suicidal ideation modulates the reduction in serotonin transporter availability in male military conscripts with major depression: a 4-[18F]-ADAM PET study. World J Biol Psychiatry. 2015;16(7):502–12.

    PubMed  Google Scholar 

  189. Yeh Y-W, Ho P-S, Chen C-Y, Kuo S-C, Liang C-S, Ma K-H, et al. Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J Neuropsychopharmacol. 2015;18(3):pyu065.

    PubMed Central  Google Scholar 

  190. Yeh Y-W, Ho P-S, Kuo S-C, Chen C-Y, Liang C-S, Yen C-H, et al. Disproportionate reduction of serotonin transporter may predict the response and adherence to antidepressants in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J Neuropsychopharmacol. 2015;18(7):pyu120.

    PubMed Central  PubMed  Google Scholar 

  191. Narayanaswami V, Tong J, Fiorino F, Severino B, Sparaco R, Magli E, et al. Synthesis, in vitro and in vivo evaluation of 11 C-O-methylated arylpiperazines as potential serotonin 1A (5-HT 1A) receptor antagonist radiotracers. EJNMMI Radiopharm. Chem. 2020;5:1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D.J., Huang, C. (2022). Radioligands for Serotonin Receptors and Transporter PET Imaging. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics