Skip to main content

IoT Based Design of an Intelligent Light System Using CoAP

  • Conference paper
  • First Online:
Artificial Intelligence and Sustainable Computing for Smart City (AIS2C2 2021)

Abstract

The Internet of things (IoT) is leading towards revolutionary applications with huge potential to improvise the efficiency of industries and environment multifold. Applications of IoT are marking their presence using the concept of a remote monitoring system, real-time data, visualization of data, and data analytics. This paper proposes and simulate an IoT based application of an Intelligent Light Control System. Luminosity sensors are used which sense the lux value. The application of light control system uses the lux value to control the switch ON/OFF of LED, remotely using the Constrained Application Protocol (CoAP protocol) at the application layer. The application is simulated in Cooja simulator along with Add-on plug-in Copper (Cu) in the Firefox browser. In this application, LEDs are switched ON/OFF automatically depending upon the availability of sunlight. The aim of this simulation is towards humungous power saving which will be a step forward to a green environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  2. Karimi, K., Atkinson, G.: What the Internet of Things (IoT) needs to become a reality. White Paper, FreeScale and ARM, pp. 1–16 (June 2013)

    Google Scholar 

  3. Feller, G.: The Internet of Things: In a Connected World of Smart Objects. Accenture & Bankinter Foundation of Innovation, pp. 24–29 (2011)

    Google Scholar 

  4. Own, C.M., Shin, H.Y., Teng, C.Y.: The study and application of the IoT in pet systems, pp. 1–8 (2013)

    Google Scholar 

  5. Maraiya, K., Kant, K., Gupta, N.: Application based study on wireless sensor network. Int. J. Comput. Appl. 21(8), 9–15 (2011)

    Google Scholar 

  6. Ning, H., Liu, H.: Cyber-physical-social based security architecture for future Internet of Things. Adv. Internet Things 2(01), 1–7 (2012)

    Article  Google Scholar 

  7. Meulen, R.V.D.: Gartner says by 2020, a quarter billion connected vehicles will enable new in-vehicle services and automated driving capabilities. Gartner. STAMFORD Conn. (November 2015)

    Google Scholar 

  8. Hinden, R., Deering, S.: RFC3513: Internet Protocol Version 6 (IPv6) Addressing Architecture (2003)

    Google Scholar 

  9. Garg, R., Sharma, S.: Comparative study on techniques of IPv6 header compression in 6LoWPAN. In: Proceedings of the International Conference on Advances in Information Processing and Communication Technology (IPCT), Rome, Italy, pp. 34–38 (2016)

    Google Scholar 

  10. Forouzan, B.A.: Network Layer: Internet Protocol in Data Communication & Networking. 4th edn., pp. 582–597. McGraw-Hill, New York (2007). Ch. 20

    Google Scholar 

  11. Stalling, W.: Wireless Communication and Networks, 4th edn., pp. 39–118. Pearson Publication Limited, London (2004)

    Google Scholar 

  12. Wang, X., Song, X.: New medical image fusion approach with coding based on SCD in wireless sensor network. J. Electr. Eng. Technol. 10(6), 2384–2392 (2015)

    Article  Google Scholar 

  13. Zhang, D., Li, W., Liu, S., Zhang, X.: Novel fusion computing method for bio-medical image of WSN based on spherical coordinate. J. Vibro Eng. 18(1), 522–538 (2016)

    Google Scholar 

  14. Zhang, X.: Design and implementation of embedded uninterruptible power supply system for web-based mobile application. Enterp. Inf. Syst. 6(4), 473–489 (2012)

    Article  Google Scholar 

  15. Chen, J., Mao, G.: Capacity of cooperative vehicular networks with infrastructure support: multi-user case. IEEE Trans. Veh. Technol. 67(2), 1546–1560 (2018)

    Article  Google Scholar 

  16. Zhang, D., Ge, H.: New multi-hop clustering algorithm for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 20, 1517–1530 (2018)

    Article  Google Scholar 

  17. Zhao, C.P.: A new medium access control protocol based on perceived data reliability and spatial correlation in wireless sensor network. Comput. Electr. Eng. 38(3), 694–702 (2012)

    Article  Google Scholar 

  18. Zhang, D., Kang, X., Wang, J.: A novel image de-noising method based on spherical coordinates system. EURASIP J. Adv. Signal Process. 2012, 1–10 (2012). https://doi.org/10.1186/1687-6180-2012-110

    Article  Google Scholar 

  19. Evans, D.: The Internet of Things: How the next evolution of the Internet is changing everything. CISCO white paper, p. 1 (2011)

    Google Scholar 

  20. Garg, R., Sharma, S.: Cooja based approach for estimation and enhancement of lifetime of 6LoWPAN environment. Int. J. Sens. Wirel. Commun. Control 9, 1–10 (2019)

    Google Scholar 

  21. Fujii, Y., Yoshiura, N., Takita, A., Ohta, N.: Smart street light system with energy saving function based on the sensor network. In: Proceedings of the Fourth International Conference on Future Energy Systems, pp. 271–272 (2013)

    Google Scholar 

  22. Abinaya, R., Varsha, V., Hariharan, K.: An intelligent street light system based on piezoelectric sensor networks. In: 2017 4th International Conference on Electronics and Communication Systems (ICECS), pp. 138–142 (2017)

    Google Scholar 

  23. Daely, P.T., Reda, H.T., Satrya, G.B., Kim, J.W., Shin, S.Y.: Design of smart LED streetlight system for smart city with web-based management system. IEEE Sens. J. 17(18), 6100–6110 (2017)

    Article  Google Scholar 

  24. Qin, L., Dong, L.L., Xu, W.H., Zhang, L.D., Leon, A.S.: An intelligent luminance control method for tunnel lighting based on traffic volume. Sustainability 9(12), 2208 (2017)

    Article  Google Scholar 

  25. Gharaibeh, A., et al.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 19(4), 2456–2501 (2017)

    Article  Google Scholar 

  26. Satrya, G.B., Reda, H.T., Woo, K.J., Daely, P.T., Shin, S.Y., Chae, S.: IoT and public weather data based monitoring & control software development for variable color temperature LED street lights. Int. J. Adv. Sci. Eng. Inf. Technol. 7(2), 366–372 (2017)

    Article  Google Scholar 

  27. Pierleoni, P., et al.: The scrovegni chapel moves into the future: an innovative Internet of Things solution brings new light to Giotto’s masterpiece. IEEE Sens. J. 18(18), 7681–7696 (2018)

    Article  Google Scholar 

  28. Chang, Y.C., Lai, Y.H.: Campus edge computing network based on IoT street lighting nodes. IEEE Syst. J. 14, 164–171 (2018)

    Article  Google Scholar 

  29. Dunkels, A., Gronvall, B., Voigt, T.: Contiki-a lightweight and flexible operating system for tiny networked sensors. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 455–462 (2004)

    Google Scholar 

  30. Kim, E., Kaspar, D., Vasseur, J.: Design and application spaces for IPv6 over low-power wireless personal area networks (6LoWPANs). RFC6568 (2012)

    Google Scholar 

  31. Garg, R., Sharma, S.: Modified and improved IPv6 header compression (MIHC) scheme for 6LoWPAN. Wirel. Pers. Commun. 103(3), 2019–2033 (2018)

    Article  Google Scholar 

  32. Ismail, N.H.A., Hassan, R., Ghazali, K.W.M.: A study on protocol stack in 6LoWPAN model. J. Theor. Appl. Inf. Technol. (JATIT) 41(2), 220–229 (2012)

    Google Scholar 

  33. Hui, J.W., Culler, D.E.: Extending IP to low-power, wireless personal area networks. IEEE Internet Comput. 12(4), 37–45 (2008)

    Article  Google Scholar 

  34. Culler, D., Chakrabarti, S.: Infusion IP. 6LoWPAN: Incorporating IEEE 802.15. 4 into the IP architecture. White paper (January 2009)

    Google Scholar 

  35. The Contiki OS. http://www.contiki-os.org/p/about-contiki.html. Accessed 13 Sep 2019

  36. Contiki - Connecting the Next Billion Devices. www.sics.se/contiki/. Accessed 18 Nov 2019

  37. The Contiki Operating System Documentation. http://www.sics.se/adam/contiki/docs/. Accessed 26 Nov 2019

  38. ANRG Installation. http://anrg.usc.edu/contiki/index.php/Installation. Accessed 17 Oct 2019

  39. ANRG. Contiki Tutorials. http://anrg.usc.edu/contiki/index.php/Contiki_tutorials. Accessed 18 Aug 2019

  40. Gonizzi, P., Duquennoy, S.: Hands on Contiki OS and Cooja Simulator: Internet of Things and Smart Cities, pp. 1–15 (2013)

    Google Scholar 

  41. GitHub. An introduction to Cooja. https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja#The_COOJA_Simulator. Accessed 18 Nov 2019

  42. Hartke, K., Shelby, Z.: Observing resources in coap. The Internet Engineering Task Force (IETF) draft-ietf-core-observe-02 (work in progress) (March 2011)

    Google Scholar 

  43. Shelby, Z., Hartke, K., Bormann, C., Frank, B.: constrained application protocol (CoAP). The Internet Engineering Task Force (IETF) draft-ietf-core-coap-06 (2011)

    Google Scholar 

  44. Gorrieri, A., Davoli, L., Picone, M.: Hands on CoAP: Exercises. Internet of things course (May 2015)

    Google Scholar 

  45. Shelby, Z., Hartke, K., Bormann, C.: Constrained application protocol (CoAP): draft-ietf-core-coap-13, IETF Trust (2012)

    Google Scholar 

  46. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. Internet Engineering Task Force (IETF): Fremont, CA, USA, pp. 2070–1721 (2014)

    Google Scholar 

  47. Kovatsch, M.: Demo abstract: human-coap interaction with copper. In: 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS 2011), pp. 1–2 (2011)

    Google Scholar 

  48. Contiki-Copper. http://people.inf.ethz.ch/mkovatsc/copper.php. Accessed 15 Sep 2019

  49. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 packets over IEEE 802.15.4 networks. Internet proposed standard RFC, vol. 4944, p. 130 (2007)

    Google Scholar 

  50. Olsson, J.: 6LoWPAN demystified. Texas Instruments (2014)

    Google Scholar 

  51. Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007)

    Google Scholar 

  52. Kim, E., Kaspar, D., Gomez, C., Bormann, C.: Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. RFC (May 2012)

    Google Scholar 

  53. Garg, R., Sharma, S.: A study on need of adaptation layer in 6LoWPAN protocol stack. Int. J. Wirel. Microw. Technol. (IJWMT) 7(3), 49–57 (2017)

    Google Scholar 

  54. Shelby, Z., Bormann, C.: Introduction in 6LoWPAN: The Wireless Embedded Internet, 1st edn., pp. 3–11. Wiley, United Kingdom (2009)

    Book  Google Scholar 

  55. Winter, T., et al.: RPL: IPv6 routing protocol for low-power and lossy networks. rfc 6550, 1–57 (2012)

    Google Scholar 

  56. Vasseur, J., Agarwal, N., Hui, J., Shelby, Z., Bertrand, P., Chauvenet, C.: RPL: the IP routing protocol designed for low power and lossy networks. Internet Protocol for Smart Objects (IPSO) Alliance, vol. 36 (2011)

    Google Scholar 

  57. Tunslip Utility. http://anrg.usc.edu/contiki/index.php/RPL_Border_Router#Tunslip_utility. Accessed 25 Oct 2019

  58. Building Contiki’s tunslip6. https://www.iot-lab.info/tutorials/build-tunslip6. Accessed 15 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, R., Chandel, S.T. (2021). IoT Based Design of an Intelligent Light System Using CoAP. In: Solanki, A., Sharma, S.K., Tarar, S., Tomar, P., Sharma, S., Nayyar, A. (eds) Artificial Intelligence and Sustainable Computing for Smart City. AIS2C2 2021. Communications in Computer and Information Science, vol 1434. Springer, Cham. https://doi.org/10.1007/978-3-030-82322-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82322-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82321-4

  • Online ISBN: 978-3-030-82322-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics