Skip to main content

Anomaly Detection in Invasively Recorded Neuronal Signals Using Deep Neural Network: Effect of Sampling Frequency

  • Conference paper
  • First Online:
Applied Intelligence and Informatics (AII 2021)

Abstract

Abnormality detection has advanced in recent years with the help of machine learning, in particular with deep learning models, which can predict accurately across many types of signals and applications. In the case of neuronal signals, abnormalities can present themselves as artefacts or manifestations of neurological diseases. Among the diverse neuronal pathologies, we chose to look at the detection of seizures, as they manifest as a brief anomaly in contrast to normal brain activity in the majority portion of the data during a prolonged recording. Epileptic patients benefit from portable systems, which are dependant on efficient energy consumption, and the sampling frequency of the signal is of vital importance element to its battery lifespan. In this article, the impact of the sampling rate on a deep learning-based multi-class classification model is explored via the use of an open-source seizure dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from mri data. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. Lecture Notes in Computer Science, pp. 136–146. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  2. Aprile, C., et al.: Learning-based near-optimal area-power trade-offs in hardware design for neural signal acquisition. In: 2016 International Great Lakes Symposium on VLSI (GLSVLSI), pp. 433–438. Ieee (2016)

    Google Scholar 

  3. Aprile, C., et al.: Adaptive learning-based compressive sampling for low-power wireless implants. IEEE Trans. Circ. Syst. I Regul. Pap. 65(11), 3929–3941 (2018)

    Article  Google Scholar 

  4. Aradhya, M.V.N., et al.: One shot cluster based approach for the detection of COVID–19 from Chest X–Ray images. Cogn. Comput. 1–9 (2021). https://doi.org/10.1007/s12559-020-09774-w

  5. Baldassarre, L., Aprile, C., Shoaran, M., Leblebici, Y., Cevher, V.: Structured sampling and recovery of ieeg signals. In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 269–272. IEEE (2015)

    Google Scholar 

  6. van Blooijs, D., Demuru, M., Zweiphenning, W., Leijten, F., Zijlmans, M.: Dataset clinical epilepsy ieeg to bids - respect longterm ieeg (2020). https://doi.org/10.18112/openneuro.ds003399.v1.0.1

  7. Burrello, A., Cavigelli, L., Schindler, K., Benini, L., Rahimi, A.: Laelaps: an energy-efficient seizure detection algorithm from long-term human ieeg recordings without false alarms (2019). https://doi.org/10.3929/ETHZ-B-000307983

  8. Chiang, J., Ward, R.K.: Energy-efficient data reduction techniques for wireless seizure detection systems. Sensors 14(2), 2036–2051 (2014)

    Article  Google Scholar 

  9. Davis, K.A., et al.: The effect of increased intracranial EEG sampling rates in clinical practice. Clin. Neurophysiol. 129(2), 360–367 (2018)

    Article  Google Scholar 

  10. Dey, N., Rajinikanth, V., Fong, S.J., Kaiser, M.S., Mahmud, M.: Social group optimization–assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020). https://doi.org/10.1007/s12559-020-09751-3

    Article  Google Scholar 

  11. Dlugosz, R., Iniewski, K.: Ultra low power current-mode algorithmic analog-to-digital converter implemented in 0.18/spl mu/m cmos technology for wireless sensor network. In: Proceedings of the International Conference Mixed Design of Integrated Circuits and System, 2006. MIXDES 2006, pp. 401–406. IEEE (2006)

    Google Scholar 

  12. Fabietti, M., et al.: Artifact detection in chronically recorded local field potentials using long-short term memory neural network. In: 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–6 (2020). https://doi.org/10.1109/AICT50176.2020.9368638

  13. Fabietti, M., et al.: Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–8 (2020)

    Google Scholar 

  14. Fabietti, M., et al.: Adaptation of convolutional neural networks for multi-channel artifact detection in chronically recorded local field potentials. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1607–1613. IEEE (2020)

    Google Scholar 

  15. Fedele, T., et al.: High frequency oscillations detected in the intracranial EEG of epilepsy patients during interictal sleep, patients electrode location and outcome of epilepsy surgery (2017). https://doi.org/10.6080/K06Q1VD5

  16. Gliske, S.V., Irwin, Z.T., Chestek, C., Stacey, W.C.: Effect of sampling rate and filter settings on high frequency oscillation detections. Clin. Neurophysiol. 127(9), 3042–3050 (2016)

    Article  Google Scholar 

  17. Heller, S., et al.: Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2268–2271. IEEE (2018)

    Google Scholar 

  18. Kaiser, M.S., et al.: iWorksafe: towards healthy workplaces during COVID-19 with an intelligent Phealth app for industrial settings. IEEE Access 9, 13814–13828 (2021)

    Google Scholar 

  19. Kamboh, A.M., Oweiss, K.G., Mason, A.J.: Resource constrained VLSI architecture for implantable neural data compression systems. In: 2009 IEEE International Symposium on Circuits and Systems, pp. 1481–1484. IEEE (2009)

    Google Scholar 

  20. Kelleher, D., Faul, S., Temko, A., Marnane, W.: On the effect of reduced sampling rate and bitwidth on seizure detection. In: 2009 IEEE International Symposium on Intelligent Signal Processing, pp. 153–156. IEEE (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  22. Kuhlmann, L., et al.: Epilepsyecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain 141(9), 2619–2630 (2018)

    Google Scholar 

  23. Li, A., et al.: epilepsy-iEEG-multicenter-dataset (2020). https://doi.org/10.18112/openneuro.ds003029.v1.0.2

  24. Liu, X., Wu, J.: A method for energy balance and data transmission optimal routing in wireless sensor networks. Sensors 19(13), 3017 (2019)

    Article  Google Scholar 

  25. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1–33 (2020). https://doi.org/10.1007/s12559-020-09773-x

    Article  Google Scholar 

  26. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018). https://doi.org/10.1109/TNNLS.2018.2790388

    Article  MathSciNet  Google Scholar 

  27. Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Shamim Kaiser, M.: Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds.) Advances on Smart and Soft Computing. AISC, vol. 1188, pp. 79–89. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6048-4_8

    Chapter  Google Scholar 

  28. Nejedly, P.: Multicenter intracranial eeg dataset (2019). https://www.kaggle.com/nejedlypetr/multicenter-intracranial-eeg-dataset. Accessed 14 Mar 2021

  29. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics. Lecture Notes in Computer Science, pp. 115–125. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  30. Orojo, O., Tepper, J., McGinnity, T., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings of the Symposium Series on Computational Intelligence, pp. 2940–2945, December 2019. https://doi.org/10.1109/SSCI44817.2019.9002841

  31. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. arXiv preprint arXiv:2007.02500 (2020)

  32. Rabby, G., Azad, S., Mahmud, M., Zamli, K.Z., Rahman, M.M.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(4), 811–833 (2020). https://doi.org/10.1007/s12559-019-09706-3

    Article  Google Scholar 

  33. Rasheed, K., et al.: Machine learning for predicting epileptic seizuresusing EEG signals: a review. IEEE Reviews in Biomedical Engineering (2020)

    Google Scholar 

  34. Schalk, G., Leuthardt, E.C.: Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011)

    Article  Google Scholar 

  35. Shoaran, M., Kamal, M.H., Pollo, C., Vandergheynst, P., Schmid, A.: Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circ. Syst. 8(6), 857–870 (2014)

    Article  Google Scholar 

  36. Shrivastwa, R.R., Pudi, V., Chattopadhyay, A.: An FPGA-based brain computer interfacing using compressive sensing and machine learning. In: 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 726–731. IEEE (2018)

    Google Scholar 

  37. Tania, M.H., et al.: Assay type detection using advanced machine learning algorithms. In: Proceedings of the Software, Knowledge, Information Management and Applications, pp. 1–8 (2019)

    Google Scholar 

  38. Temko, A., Sarkar, A., Lightbody, G.: Detection of seizures in intracranial EEG: UPenn and mayo clinic’s seizure detection challenge. In: Proceedings of the Engineering in Medicine and Biology Society, pp. 6582–6585 (2015). https://www.kaggle.com/c/seizure-detection. Accessed 14 June 2020

  39. Truong, N.D., et al.: Integer convolutional neural network for seizure detection. IEEE J. Emerg. Sel. Top. Circuit. Syst. 8(4), 849–857 (2018)

    Article  Google Scholar 

  40. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–6 (2020)

    Google Scholar 

  41. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensembleapproach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Article  Google Scholar 

  42. Yahaya, S.W., Lotfi, A., Mahmud, M., Machado, P., Kubota, N.: Gesture recognition intermediary robot for abnormality detection in human activities. In: Proceedings of the Symposium Series on Computational Intelligence, pp. 1415–1421, December 2019. https://doi.org/10.1109/SSCI44817.2019.9003121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fabietti, M., Mahmud, M., Lotfi, A. (2021). Anomaly Detection in Invasively Recorded Neuronal Signals Using Deep Neural Network: Effect of Sampling Frequency. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds) Applied Intelligence and Informatics. AII 2021. Communications in Computer and Information Science, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-030-82269-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82269-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82268-2

  • Online ISBN: 978-3-030-82269-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics