Skip to main content

Governing Black-Box Agents in Competitive Multi-Agent Systems

  • 335 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12802)

Abstract

Competitive Multi-Agent Systems (MAS) are inherently hard to control due to agent autonomy and strategic behavior, which is particularly problematic when there are system-level objectives to be achieved or specific environmental states to be avoided.

Existing solutions for this task mostly assume specific knowledge about agent preferences, utilities and strategies, neglecting the fact that actions are not always directly linked to genuine agent preferences, but can also reflect anticipated competitor behavior, be a concession to a superior adversary or simply be intended to mislead other agents. This assumption both reduces applicability to real-world systems and opens room for manipulation.

We therefore propose a new governance approach for competitive MAS which relies exclusively on publicly observable actions and transitions, and uses the acquired knowledge to purposefully restrict action spaces, thereby achieving the system’s objectives while preserving a high level of autonomy for the agents.

Keywords

  • Multi-agent system
  • Competition
  • Stochastic game
  • Governance
  • Restriction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-82254-5_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-82254-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.: Normative multi-agent systems (2013). https://doi.org/10.4230/DFU.Vol4.12111.i

  2. Asadi, M., Huber, M.: State space reduction for hierarchical reinforcement learning, January 2004

    Google Scholar 

  3. Bade, S.: Nash equilibrium in games with incomplete preferences. Econ. Theory 26(2), 309–332 (2005). www.jstor.org/stable/25055952

  4. Balke, T., et al.: Norms in MAS: definitions and related concepts, p. 31, January 2013

    Google Scholar 

  5. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. Comput. Math. Organ. Theory 12(2), 71–79 (2006). https://doi.org/10.1007/s10588-006-9537-7

    CrossRef  Google Scholar 

  6. Brafman, R.I., Tennenholtz, M.: On partially controlled multi-agent systems. J. Artif. Int. Res. 4(1), 477–507 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bulling, N., Dastani, M.: Norm-based mechanism design. Artif. Intell. 239(C), 97–142 (2016). https://doi.org/10.1016/j.artint.2016.07.001

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI 1998/IAAI 1998, pp. 746–752. American Association for Artificial Intelligence, Menlo Park (1998). http://dl.acm.org/citation.cfm?id=295240.295800

  9. Dean, T., Givan, R., Leach, S.: Model reduction techniques for computing approximately optimal solutions for Markov decision processes. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 124–131. UAI 1997, Morgan Kaufmann Publishers Inc., San Francisco (1997)

    Google Scholar 

  10. Dell’Anna, D., Dastani, M., Dalpiaz, F.: Runtime revision of norms and sanctions based on agent preferences. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 1609–1617. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2019). Event-place: Montreal QC, Canada

    Google Scholar 

  11. Durugkar, I., Liebman, E., Stone, P.: Balancing individual preferences and shared objectives in multiagent reinforcement learning, p. 2483, July 2020. https://doi.org/10.24963/ijcai.2020/343

  12. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: minimality and simplicity. Artif. Intell. 119(1), 61–101 (2000)

    MathSciNet  CrossRef  Google Scholar 

  13. García-Camino, A., Rodríguez-Aguilar, J., Sierra, C., Vasconcelos, W.: A rule-based approach to norm-oriented programming of electronic institutions. SIGecom Exchanges 5, 33–40 (2006)

    Google Scholar 

  14. Gutierrez, J., Perelli, G., Wooldridge, M.: Imperfect information in reactive modules games. Inf. Comput. 261, 650–675 (2018)

    MathSciNet  CrossRef  Google Scholar 

  15. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: A survey and critique of multiagent deep reinforcement learning. Auton. Agent. Multi-Agent Syst. 33(6), 750–797 (2019). https://doi.org/10.1007/s10458-019-09421-1

    CrossRef  Google Scholar 

  16. Hoen, P.J., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A.: An overview of cooperative and competitive multiagent learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 1–46. Springer, Heidelberg (2006). https://doi.org/10.1007/11691839_1

    CrossRef  Google Scholar 

  17. Kim, S., Lewis, M.E., White, C.C.: State space reduction for nonstationary stochastic shortest path problems with real-time traffic information. IEEE Trans. Intell. Transp. Syst. 6(3), 273–284 (2005). https://doi.org/10.1109/TITS.2005.853695

    CrossRef  Google Scholar 

  18. Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artif. Intell. 174(11), 685–703 (2010). https://doi.org/10.1016/j.artint.2010.04.019. http://www.sciencedirect.com/science/article/pii/S000437021000055X

  19. Lecarpentier, E., Rachelson, E.: Non-stationary Markov decision processes a worst-case approach using model-based reinforcement learning, April 2019

    Google Scholar 

  20. Levy, Y.J., Solan, E.: Stochastic games. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 1–23. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-642-27737-5_522-2

    CrossRef  Google Scholar 

  21. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the eleventh international conference on international conference on machine learning, ICML1994, pp. 157–163. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  22. Liu, L., Chattopadhyay, A., Mitra, U.: On solving MDPs with large state space: exploitation of policy structures and spectral properties. IEEE Trans. Commun. 67(6), 4151–4165 (2019). https://doi.org/10.1109/TCOMM.2019.2899620

    CrossRef  Google Scholar 

  23. Liu, T., Wang, J., Zhang, X., Cheng, D.: Game theoretic control of multiagent systems. SIAM J. Control. Optim. 57, 1691–1709 (2019)

    MathSciNet  CrossRef  Google Scholar 

  24. Lüdtke, S., Schröder, M., Krüger, F., Bader, S., Kirste, T.: State-space abstractions for probabilistic inference: a systematic review. J. Artif. Int. Res. 63(1), 789–848 (2018). https://doi.org/10.1613/jair.1.11261

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Majeed, S.J., Hutter, M.: Exact reduction of huge action spaces in general reinforcement learning (2020)

    Google Scholar 

  26. Meyer, J.J.C., Wieringa, R.J. (eds.): Deontic Logic in Computer Science: Normative System Specification. Wiley, USA (1994)

    Google Scholar 

  27. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning,ICML2016, vol. 48. pp. 1928–1937. JMLR.org (2016)

    Google Scholar 

  28. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–33 (2015)

    CrossRef  Google Scholar 

  29. Morales, J.: On-line norm synthesis for open multi-agent systems. Ph.D. thesis, Universitat de Barcelona (2016)

    Google Scholar 

  30. Morris-Martin, A., De Vos, M., Padget, J.: Norm emergence in multiagent systems: a viewpoint paper. Auton. Agents Multi-Agent Syst. 33(6), 706–749 (2019). https://doi.org/10.1007/s10458-019-09422-0

    CrossRef  Google Scholar 

  31. Nowé, A., Vrancx, P., De Hauwere, Y.M.: Game theory and multi-agent reinforcement learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-the-Art, pp. 441–470. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_14

    CrossRef  Google Scholar 

  32. Perelli, G.: Enforcing equilibria in multi-agent systems. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 188–196. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2019). Event-place: Montreal QC, Canada

    Google Scholar 

  33. Relund Nielsen, L., Jørgensen, E., Højsgaard, S.: Embedding a state space model into a Markov decision process. Ann. Oper. Res. 190(1), 289–309 (2011). https://doi.org/10.1007/s10479-010-0688-z

    MathSciNet  CrossRef  MATH  Google Scholar 

  34. Rotolo, A.: Norm compliance of rule-based cognitive agents. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 2716–2721, January 2011

    Google Scholar 

  35. Rotolo, A., van der Torre, L.: Rules, agents and norms: guidelines for rule-based normative multi-agent systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011. LNCS, vol. 6826, pp. 52–66. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22546-8_6

    CrossRef  Google Scholar 

  36. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. U.S.A. 39(10), 1095–1100 (1953). https://pubmed.ncbi.nlm.nih.gov/16589380

  37. Shoham, Y., Powers, R., Grenager, T.: Multi-agent reinforcement learning: a critical survey, June 2003

    Google Scholar 

  38. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line design. Artif. Intell. 73(1), 231–252 (1995). https://doi.org/10.1016/0004-3702(94)00007-N. http://www.sciencedirect.com/science/article/pii/000437029400007N

  39. Stirling, W.C., Felin, T.: Game theory, conditional preferences, and social influence. PLOS One 8(2), 1–11 (2013). https://doi.org/10.1371/journal.pone.0056751

    CrossRef  Google Scholar 

  40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    MATH  Google Scholar 

  41. Watkins, C.: Learning from delayed rewards, January 1989

    Google Scholar 

  42. Wolf, T.D., Holvoet, T.: Emergence and self-organisation: a statement of similarities and differences (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pernpeintner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pernpeintner, M., Bartelt, C., Stuckenschmidt, H. (2021). Governing Black-Box Agents in Competitive Multi-Agent Systems. In: Rosenfeld, A., Talmon, N. (eds) Multi-Agent Systems. EUMAS 2021. Lecture Notes in Computer Science(), vol 12802. Springer, Cham. https://doi.org/10.1007/978-3-030-82254-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82254-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82253-8

  • Online ISBN: 978-3-030-82254-5

  • eBook Packages: Computer ScienceComputer Science (R0)