Skip to main content

Wood—A Combustible Building Material

  • Chapter
  • First Online:
Model Fire in a Two-Storey Timber Building

Part of the book series: SpringerBriefs in Fire ((BRIEFSFIRE))

  • 254 Accesses

Abstract

This chapter describes wood as a combustible material, discussing the influence of thermal degradation on individual wood structures (microscopic and macroscopic) as well as on changes in its chemical composition and changes in physical and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osvald A, Balog K (2017) Horenie dreva. Vydavateľstvo Technickej univerzity vo Zvolene, Zvolen, p 106. ISBN 978–80–228–2953–3

    Google Scholar 

  2. Ševeček P, Netopilová M (1992) Nauka o materiálu. (Material science). VŠB TU v Ostrave, Ostrava pp 184

    Google Scholar 

  3. Osvald A (1995) Drevostavba ≠ požiar. (Wooden building ≠ fire). Technická univerzita vo Zvolene, Zvolen, p 336. ISBN 978–80–228–2220–6

    Google Scholar 

  4. Schaffer EL (1973) Elevated temperature effect on the longitudinal mechanical properties of wood. PhD Thesis, Department of Mechanical Engineering, University of Wisconsin, Madison, WI 1970

    Google Scholar 

  5. Gerhards CHC (1982) Effect of moisture content and temperature on the me-chanical properties of wood: an analysis of immediate effects. Wood Fiber 14(1):4–36. ISSN: 07356161

    Google Scholar 

  6. Bučko J, Klaudová A, Kačík F (1994) Vacuumtrockung des Laub- und Nadelholz. Theorie und Praxis der Vacuum-Schnittholztrocknung. Internationales Wissenschaftliches Symposium. Technical University in Zvolen, Zvolen, pp 96–104

    Google Scholar 

  7. Fengel D, Wegener, G (1989) Wood. Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany, pp 26–226

    Google Scholar 

  8. Kačíková D (2004) Vplyv nízkoteplotnej degradácie na zmeny vybraných che-mických a mechanických charakteristík smrekového dreva. (Effect of low-temperature degradation on changes in selected chemical and mechanical characteristics of spruce wood.) Zborník Wood and Fire Safety. 2004. Zvolen: Technická univerzita vo Zvolene. Not numbered. ISBN 80–228–1321–4

    Google Scholar 

  9. Karlsson B, Quintiere, JG (2000) Enclosure fire dynamics. CRC Press, London. ISBN 0-8493-1300-7

    Google Scholar 

  10. 1995-1-1 Eurocode 5: Bemessung und Konstruktion von Holzbauten. Teil 1–1: Allgemeines. Allgemeine Regeln und Regeln fűr den Hochbau

    Google Scholar 

  11. Okuyama T (1974) Effect of strain rate on mechanical properties of wood. IV. On the influence of the rate of deflection and the temperature to bending strength of wood. J Jap Wood Res Soc 20(5):210–16. ISSN 1435–0211

    Google Scholar 

  12. Požgaj A et al (1997) Štruktúra a vlastnosti dreva. (Wood structure and properties), no 2. Príroda, Bratislava, p 488. ISBN 80–07–00960–4

    Google Scholar 

  13. Green DW et al (1999) Adjusting modulus of elasticity of lumber for changes in temperature. Wood Eng 10:82–94

    Google Scholar 

  14. Glos P, Henrici D (1991) Biegefestigkeit und Biege-E-Modul von Fichtenbau-holz im Temperaturbereich bis 150 °C. Holz Roh-und Werkstoff 49:417–22. ISSN 0018–3768

    Google Scholar 

  15. Comben AJ (1964) The effect of low temperatures on the strength and elastic properties of timber. J Inst Wood Sci 13:44–55. ISSN 0043–7719

    Google Scholar 

  16. Partl M, Strassler H (1977) Effect of temperature on the static and impact bending behavior of spruce wood. Holzforsch. Holzverwert 29(5):94–101. ISSN 0018–3830

    Google Scholar 

  17. Sulzberger PH (1953) The effect of temperature on the strength of wood, plywood and glue joints. Aeronaut. Res. Consultative Com. Rep. ACA–46. Melbourne, Australia

    Google Scholar 

  18. Tsuzuki K, Takemura T, Asano I (1976) Physical properties of wood-based materials at low temperatures I. The bending strength of wood as related to temperature and specific gravity. J Jap Wood Res Soc 22(7):381–86. ISSN 1435–0211

    Google Scholar 

  19. Östman BL (1985) Wood tensile strength of temperatures and moisture content simulating fire conditions. Wood Sci Technol 19(2):103–16. ISSN: 0043 7719

    Google Scholar 

  20. Östman BL (2010) Fire safety in timber buildings. Technical guideline for Europe. SP report 2010, vol 19. ISBN 978–91–86319–60–1

    Google Scholar 

  21. Nyman C (1980) The effect of temperature and moisture on the strength of wood and glue joists. Technical Research Centre of Finland (VTT). Report Forest Products Lab, p 6

    Google Scholar 

  22. Knudsen RM, Schniewind AP (1975) Performance of structural woodmembers exposed to fire. Forest Prod J 25(2):23–32. ISSN:00157473

    Google Scholar 

  23. Mäger KN, Tiso M, Just A (2020) Fire design model for timber frame assemblies with rectangular and i-shaped members. In: Makovicka Osvaldova L et al (eds) WFS 2020, Wood & fire safety. © Springer Nature Switzerland AG 2020, pp 268–274. https://doi.org/10.1007/978-3-030-41235-7_40

  24. Schaffer EL (197) State of structural timber fire endurance. Wood Fiber 9(2):145–170. ISSN: 07356161

    Google Scholar 

  25. Pozdieiev S et al (2020) Research of wooden bearing structures behavior under fire condition with use advanced methods of fire resistance calculation considering eurocode 5 recommendation. In Makovicka Osvaldova L et al (eds) WFS 2020, Wood & fire safety. © Springer Nature Switzerland AG 2020, pp 326–332. https://doi.org/10.1007/978-3-030-41235-7_48

  26. Regináč L (1990) Náuka o dreve II. (Wood science II). Technická univerzita, Zvolen p 424. ISBN 80–228–0062–7

    Google Scholar 

  27. Osvald A, Balog K (1990) Zmeny vo vlastnostiach smrekového dreva po tepelnom namáhaní: I. Mechanické a fyzikálne vlastnosti. (Changes in the properties of spruce wood after heat stress: I. Mechanical and physical properties. Drevo 45:103–5. ISSN 0012-6144

    Google Scholar 

  28. Osvald A (1995) Vplyv vyšších teplôt na tlakovú pevnosť smrekového dreva. (The impact of higher temperatures on the compressive strength of spruce wood). Zborník vedeckých prác DF VŠLD Zvolen, pp 285–296. ISBN 80–05–00578–4

    Google Scholar 

  29. Kollman F (1940) The mechanical properties of wood of different moisture contents in –200 °C to +200 °C temperature range. VDI-Forschungsh 403(11):1–18

    Google Scholar 

  30. Kollman F (1960) The dependence of the elastic properties of wood on temperature. Holz Roh-Werkst 18(8):304–314. ISSN 0018- 3768

    Google Scholar 

  31. Okuyama T (1975) Effect of strain rate on mechanical properties of wood. V. On the influence of temperature on bending strength. J Jap Wood Res Soc 20(5):210–16. ISSN 1435–0211

    Google Scholar 

  32. Sellevold E J et al (1975) Low temperature internal friction and dynamic modulus for beech wood. Wood Fiber 7(3):162–169. ISSN: 07356161

    Google Scholar 

  33. Kitahara RN, Matsumoto T (1974) Temperature dependence of dynamic mechanical loss of wood. J Jap Wood Res Soc 20(8):349–54. ISSN 1435–0211

    Google Scholar 

  34. Sadoh T (1981) Viscoelastic properties of wood in swelling systems. Wood Sci Tech 15(1):57–66. ISSN 0043-7719

    Google Scholar 

  35. Young RA (1978) Thermal transitions of wood polymers by torsional pendulum analysis. Wood Sci 11(2):79–101. ISSN 0043–7719

    Google Scholar 

  36. Law KN (1981) Koran Z (1981) Torsional-shear stress of wood at varioutemperatures. Wood Sci Technol 15(3):227–235

    Article  Google Scholar 

  37. Stone JE (1965) The rheology of cooked wood. II. Effect of temperature. Tappi 38(8):452–55

    Google Scholar 

  38. Martinka J et al (2016) Investigation of the influence of spruce and oak wood heat treatment upon heat release rate and propensity for fire propagation in the flashover phase. Acta Facultatis Xylologiae Zvolen 58(1):5–14. https://doi.org/10.17423/afx.2016.58.1.01. ISSN: 1336–3824

  39. Chovanec D, Osvald A (1992) Spruce wood structure changes caused by flame and radiant source. Technical university in Zvolen, Zvolen 62. ISBN 80–228–0182–8

    Google Scholar 

  40. Iringova A (2017) Lightweight building envelopes in prefabricated buildings in terms of fire resistance. In: MATEC Web of conferences, vol 117, art no 00062. ISSN: 2261 236X 4

    Google Scholar 

  41. Maraveas C, Miamis K, Matthaiou CE (2015) Performance of timber connections exposed to fire: a review. Fire Technol 51:1401–1432. https://doi.org/10.1007/s10694-013-0369-y

    Article  Google Scholar 

  42. Tran HC, White RH (1992) Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater 16:197–206. ISSN: 0308–0501

    Google Scholar 

  43. EN 1995-1–2 Eurocode 5: Design of timber structuresPart1–2: General Structural fire design

    Google Scholar 

  44. EN 1990 (2002) Eurocode. Basis of structural design

    Google Scholar 

  45. EN 1991 (2002) Eurocode 1: Action on structures

    Google Scholar 

  46. EN (1998) Eurocode 8: Design of structures for earthquake resistance

    Google Scholar 

  47. EN 1995-2 Eurocode 5: Bridges

    Google Scholar 

  48. STN EN 300 (1999) Oriented Strand Boards (OSB). Definitions, classification and specifications

    Google Scholar 

  49. EN 301 Adhesives, phenolic and aminoplastic, for load-bearing timber structures-Classification and performance requirements.

    Google Scholar 

  50. EN 309 (1992) Particleboards. Definition and classification

    Google Scholar 

  51. EN 313-1 (2001) Plywood. Classification and terminology. Part 1: Classification

    Google Scholar 

  52. EN 314-1 (2005) Plywood-Bonding quality-Part 1: Test methods

    Google Scholar 

  53. EN 316 (2009) Wood fibre boards. Definition, classification and symbols

    Google Scholar 

  54. EN 520 (2004) Gipsplatten. Definitionen, Anforderungen, Prüfverfahren

    Google Scholar 

  55. EN 912 (2001) Timber fasteners-specifications for connectors for timbers

    Google Scholar 

  56. EN 1363 (1999) Fire resistance tests

    Google Scholar 

  57. BS EN 1365-1 (1999) Fire resistance tests for non-loadbearing elements. Part 1: Walls

    Google Scholar 

  58. EN 1365-2 (2000) Fire resistance tests for loadbearing elements. Part 2: Floors and roofs

    Google Scholar 

  59. EN 12369–1 (2001) Wood-based panels. Characteristic values for structural design. Part 1: OSB, particleboards and fibreboards

    Google Scholar 

  60. STN EN 13162 (2003) Thermal insulation products for buildings. Factory made mineral wool (MW) products. Specification

    Google Scholar 

  61. ENV 13381–7 (2019) Test methods for determining the contribution to the fire resistance of structural members. Part 7: applied protection to timber members

    Google Scholar 

  62. EN 13986:2004 Wood-based panels for use in construction. Characteristics, evaluation of conformity and marking

    Google Scholar 

  63. STN EN 14081–1 (2005) Drevené konštrukcie. Timber structures-strength graded structural timber with rectangular cross section-Part 1: General requirements

    Google Scholar 

  64. STN EN 14080 (2005) Drevené konštrukcie. Timber structures. Glued laminated timber and glued solid timber. Requirements

    Google Scholar 

  65. EN 14374 (2004) Timber structures. Structural laminated veneer lumber. Requirements

    Google Scholar 

  66. England P, Iskra B (2020) Australian building code change-eight-storey timber buildings. In: Makovicka Osvaldova L et al (eds) WFS 2020, Wood & Fire Safety. © Springer Nature Switzerland AG 2020, pp 219–225. https://doi.org/10.1007/978-3-030-41235-7_33

  67. Iringova A (2017) Revitalisation of external walls in listed buildings in the context of fire protection. In: Procedia engineering, vol 195, pp 163–170. ISSN: 1877–7058, 2017

    Google Scholar 

  68. Kasymov D et al (2020) Thermography of wood-base panels during fire tests in laboratory and field conditions. In: Makovicka Osvaldova L et al (eds) WFS 2020, Wood & fire safety. © Springer Nature Switzerland AG 2020, pp 203–209. https://doi.org/10.1007/978-3-030-41235-7_31

  69. Niemz P (1993) Physik des Holyes und der Holzwerkstoffe. DRW–Verlag, Dresden, p 243

    Google Scholar 

  70. Sandanus J, Sógel K (2011) Timber structures–exercises and calculations, University script, Chapter No.7: Design of connections in a timber hall structure (in Slovak), pp 77–101

    Google Scholar 

  71. EN 13501-2 (2004) Fire classification of construction products and building elements. Part 2: Classification using data from fire resistance tests, excluding ventilation services

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Štefko .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Štefko, J., Osvald, A. (2021). Wood—A Combustible Building Material. In: Model Fire in a Two-Storey Timber Building. SpringerBriefs in Fire. Springer, Cham. https://doi.org/10.1007/978-3-030-82205-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82205-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82204-0

  • Online ISBN: 978-3-030-82205-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics